EHzürich

The Future of Mobility - a Chance for Public Transportation

Emilio Frazzoli, Claudio Ruch & Lukas Sieber Institute for Dynamic Systems and Control, D-MAVT, ETH Zürich

öV-Branchenkonferenz 2018 Fachhochschule Nordwestschweiz, Olten

Why Self-driving Vehicles?

A financial perspective on personal mobility (US Market)

- Safety:
 - "Cost of a statistical life": CHF 9.1M
 - 2014 NHTSA report:
 - Economic cost of road accidents: ~ CHF 277B/year.
 - Societal harm of road accidents: ~ CHF594B/year
- Cost of congestion:
 - Texas Transportation Institute, 2012: ~ CHF 100B/year
- Health costs of congestion:
 - Harvard School of Public Health, 2010: ~ CHF 50B/year
- Increased productivity/leisure:
 - Estimate CHF 1.2T/year
- Car sharing:
 - Assuming a "sharing factor" of 4, estimate CHF 1.8T/year of benefits to individuals.
 - Other studies [Burns et al., '13, Fagnant, Kockelman '14] suggest higher sharing factors, up to ~10.

A financial perspective on personal mobility (CH Market)

- Safety:
 - "Cost of a statistical life": CHF 9M
 - Estimate based on 2010 ARE report and others:
 - Economic cost of road accidents: ~ CHF1'966M/year.
 - Societal harm of road accidents: ~ CHF 7158M/year
- Cost of congestion:
 - BFE figures, ARE report 2010: ~ CHF1'565M/year
- Health costs of congestion:
 - Various reports, estimate: ~ CHF 2'097M/year
- Increased productivity/leisure:
 - Estimate ~ CHF 37'500 M/year
- Car sharing:
 - Assuming a "sharing factor" of 4, estimate CHF 24'400M/year of benefits to individuals.
 - Other studies [Burns et al., '13, Fagnant, Kockelman '14] suggest higher sharing factors, up to ~10.

Financial Perspective: Differences

- Higher mode share if individual motorized traffic in the US, .e.g., 57% in Chicago, 25%

"Autonomous Mobility on Demand (AMoD)" in Context

Product vs. Service

	AVs as a consumer product	AVs as a service (MaaS)
Scope Where and when the AV capabilities must function	Everywhere, all the time	Geo-, time-, weather-fenced operation
Financials Cost constraints	Comparable to the cost of the vehicle and/or driver's time.	Comparable to the cost of hiring a driver
	NPV of the driver's time: ~23,000 USD for a 10-year lifetime	> 100,000 USD per year
Infrastructure Maps, dealers, service	Global scale, immediately	Scale (sub)linearly with Epithe user base
Servicing and Maintenance	Most high-tech sensors etc. En not user serviceable yet	Servicing/maintenance crews already on roster.

WHEN WILL AUTONOMOUS VEHICLES ARRIVE?

Level 4/5 Autonomous Vehicle Penetration

nuTonomy

Sources: ¹Nissan, Toyota, Ford, BMW etc.; ²nuTonomy estimates; ³BCG; ⁴IEEE; ⁵McKinsey

Labor Market

If Singapore would use only autonomous taxis

- [Spieser, Treleaven, Zhang, Frazzoli, Morton, Pavone]: transportation demand of Singapore could be met with a fleet of 300'000 Fahrzeugen vehicles.
- Considering a conservative estimate of 2.5 drivers per vehicle: 750'000 people out of a population of 5.399 Mio. people have to be drivers.
- One out of ~7 people would work as a driver.

Autonomous mobility does not destroy jobs but enables a novel form of transportation and the use of human resources for more productive tasks.

anHzürich

2 e.g "Rafor sys International and the system of the syste

e.g., Pavone, Marco, et al. "Robotic load balancing for mobility-on-demand systems." The International Journal of Robotics Research 31.7 (2012): 839-854.

Theoretical Results

 \checkmark Sound theories and proven limits. \checkmark Insights thanks to analytical formulas.

- Simplified models do not model reality accurately enough.
- Often results have not been tested on high-fidelity simulations.

Case Study: Autonomous Mobility-on-Demand in Zürich

- City population: 372'857
- Metropolitan area: 1'830'000
- Fleet of 137'255 private vehicles in city alone ¹.
- Travel behavior ¹:

Mean daily distance per capita	30.1 km
Mean number of daily trips per capita	3.4
Mean daily waytime capita	101 min

Parking spaces in Zürich ¹:

Parking spaces in public streets	49'058	
Parking spaces on private ground	210'300	
Parking spaces in total	259'358	
(of which parking spaces in car parks)	18'023	

Modal split of city population ¹:

Case Study: Autonomous Mobility on Demand in Zürich

- Conclusions
 - Today: 2.71 inhabitants per car.
 - With AMoD: 9.7 inhabitants per car yields excellent service level.
 - The choice of the fleet control algorithm has large influence on the performance.
 - How will this new form of shared transportation compare in price?

Mean wait times at peak times (solid line) and for the entire day (dashed line).

Case Study: Autonomous Mobility on Demand in Zürich

hd:

- Current taxi price in Zurich:
 - 8 CHF base plus 5 CHF/km
- Full costs of a private vehicle (incl. value of time):
 - ~1.2 CHF/km
- Subsidized prices for mass transit:
- 0.25
 Convenience comparable to private transporation, prices similar to conventional public tranportation.
 Auto How would such a service change the transportation landscape?

Minimal price per AMoD customer kilometre at 3% margin.

Ongoing Research: AMoD as a Form of Public Transportation in Cases of Low Utilization?

 Some train lines in Switzerland are financed less than 25% from ticket revenues.. Train lines are not closed as population sees bus replacements as an inferior alternative.

Ongoing Research: Example «Läufelfingerli» S9 Olten-Sissach

Preliminary Results: Vehicle Status at 120 Vehicles

• **120** autonomous vehicles probably cover the demand very well..

Preliminary unverified results (currently ongoing research)

Preliminary Results: Fleet Distances for 120 Vehicles

- Fleet distances
 - Pickup of customer
 - With customer
- Unit-Capacity, several

customers per vehicle could further increase efficiency.

Preliminary unverified results (currently ongoing research)

Preliminary Results: Wait Times with 120 Vehicles

Wait times
95% quantile
50% quantile

• Mean

me?

Could **120** on-demand
 vehicles satisfy the demand
 at mean wait times < 15 min

(peak) and 4-5 min during

Preliminary unverified results (currently ongoing research)

Conclusions

- Level-4 autonomous vehicles enable "oneway" mobility at a large scale.
- Key tradeoff for mobility: throughput vs. delay as a function of space and time
- Standard mass transit provides high throughput through high-capacity vehicles.
- AMoD can provide an additional operating point through higher availability and responsiveness, with lower-capacity vehicles.
 - First- and last-mile connections make mass transit more attractive;
 - Provide an attractive alternative to lowutilization routes.

