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1 Preamble 
This present technology report Video / FOS describes the status of all activities regarding the supporting 

localisation technologies Video / FOS of the last 16 months which have been triggered by the commis-

sioning of the GLAT technology PoC on 6 June 2018. 

After the publication of the interim report (Zwischenbericht PoC) [1] beginning of 2019, it was decided 

at the request of the GLAT project management to focus the activities on the sensor technologies: 

GNSS, IMU and wheel odometry as well as their fusion, which resulted in a technology report (Technol-

ogiebericht PoC) [2] on these topics which was completed by the end of 2019. In addition, a separate 

technology report for the supporting technologies FOS and video, has been commissioned for April 

2020, which resulted in the present document. 

Compared to the interim report [1], many of the qualitative statements in the technology report are now 

quantitatively evaluated and presented on the basis of measurements. The report focuses on the ques-

tion of whether and under what conditions the technical and architectural feasibility of the GLAT system 

is given. 

Target audience 

The technology report addresses the core team smartrail 4.0, the Federal Office of Transport FOT and 

all interested smartrail 4.0 partners. It will be presented to the core team and published on  

https://www.smartrail40.ch. 
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2 General view Technology PoC GLAT – Video / FOS 

2.1 Aims and objectives 

The aim is a proof of concept of the supporting localisation technologies Video and Fiber Optic Sensing 

(FOS) answering as much as possible the following fundamental questions: 

• To what extent can these technologies be used for reliable and accurate localisation in the 

railway environment? 

• Under which conditions does the respective technology work? 

• What are the options and restrictions regarding possible applications? 

• What level of accuracy and availability can be achieved in the measurement runs? 

• Can qualitative and quantitative statements be made regarding the determination of accuracy? 

• Which prerequisites must be met? 

The technology PoC shall pursue a more detailed investigation on the sensor technologies Video and 

Fiber Optic Sensing (FOS) for accurate and reliable train localisation and, if possible, applicable on the 

entire network of railways in Switzerland. 

For optimisation and testing, single measurement runs shall be carried out with the various sensor tech-

nologies. To compare the different technologies, a run with all sensors installed in parallel shall be per-

formed. 

The results shall be checked against ground truth, e.g. axle counters, balises and/or GNSS/IMU data. 

The potential and the capability of the individual technologies shall be accordingly assessed. Another 

important aspect is certifiability of the approaches. This is essential for deploying localisation in railways 

for dedicated use cases and therefore it shall be considered carefully (see 5.2). 

Derived from the overall objectives the technology-specific fields of action and objectives are listed in 

the following sections: 

Sensor Technology Video 

The following aims and objectives shall be taken into account for the sensor technology Video: 
 

• Improving camera setup for railway application 
o with main focus on ease of use and reliable object detection 

• Railway identification and camera calibration 
o Automatic track detection 
o Automatic extrinsic camera calibration 

• Train localisation by Visual Odometry 
o Relative localisation of train 

▪ calculation of relative train position and distance travelled  
▪ reduction of drift 
▪ estimation of the confidence of the results (error distribution) 

o Absolute localisation of train 
▪ using landmarks for determining the absolute train position and correcting er-

rors and uncertainties 

• Object recognition 
o automatic detection of infrastructure objects, e.g. stopping plates, AprilTags, points, 

by using the camera system 

• Realtime capable and deterministic algorithms with respect to certifiability 

• Investigations on robustness under various weather and light conditions 

• Proving results by measurement run by comparing to GNSS / IMU and Track Topography 
(GTG) 
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Sensor Technology FOS 

The following aims and objectives shall be taken into account for the sensor technology FOS: 

• Calibration of the fiber cable with respect to the track 

• Tracking of  

o moving trains 

o their position 

o their front and rear ends 

at different velocities 

• Determining the 

o length of train, i.e. train integrity 

o velocity 

• Estimation of the confidence of the result (error distribution) 

• Realtime capable and deterministic algorithms with respect to certifiability 

• Investigations on robustness under various weather conditions and by given disturbances such 

as traffic on a nearby motorway 

• Proving results by measurement run with measurement train and applying FOS on all standard 

trains travelling in a given time slot 

 

SBB Innovation project Optical Train Localisation 

In the SBB Innovation project “Optical Train Localisation” we investigate an initial proof of concept (PoC), 

for a deep learning based optical approach for exact train localisation. The presented PoC is performed 

in three iterations.  

In the first iteration, we investigate the following objectives: 

• Optical detection and recognition of tracks and selection of track that was driven on 

• Optical detection of further objects of interest along the tracks 

In the second iteration, we investigate the following objectives: 

• Integration of topology database (DfA) with optical track selection to obtain a track specific lo-

calisation.  

• Investigation of the robustness of the optical detection with respect to further lighting and 

weather conditions as well as for further routes. 

In the third iteration, we investigate the following objectives: 

• Optical detection and recognition of mast boards to determine the longitudinal position of the 

train 

• Optical detection and recognition of kilometre panels to determine the longitudinal position of 

the train 

Optical detection of switch state and expected driveway of the train 
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2.2 Initial Situation (Technologiebericht-PoC_GLAT_v1.00 [1]) 

Localisation is essential for safe rail systems. Nowadays, absolute train localisation is based on infra-

structure and only at particular checkpoints, e.g. using balises. A continuous localisation in real-time is 

the next step in rail automation. In the following, different solutions and concepts are considered and 

assessed. 

This report mainly focuses on the sensor technologies Video and Fiber Optic Sensing (FOS) including 

deterministic and certifiable approaches of image and signal processing algorithms. In addition, the SBB 

innovation project “Optical Train Localisation” features a deep-learning approach on the available data, 

which is non-deterministic. 

Sensor Technology Video 

Previous investigations showed huge potentials for Visual Odometry and Video Localisation for relative 

and absolute train localisation. Both technologies basically work under good weather and light condi-

tions, but reliability, availability and accuracy shall be improved and assessed, also under non-optimal 

conditions. 

Basically, Video is divided into Visual Odometry for local or relative localisation and into Video Locali-

sation for absolute localisation, as they were also considered in [1] and [2]. The previous report [1] 

proves the potentials and challenges of these technologies which may play a significant role in train 

localisation in the future. 

The main benefit of Visual Odometry is the possibility for a slip-free odometry. Video Localisation pro-

vides absolute train positions and may replace balises in the future. Furthermore, it can be used to 

support Visual Odometry, e.g. for increasing accuracy over a long distance.  

In a previous measurement run between Thun and Burgdorf, 3 TByte of video data were recorded under 

varying light conditions and at different train speeds. Two algorithm approaches were evaluated, i.e. 

speed calculation by optical flow of the video images and by optical mouse tracking. It could be shown 

that Visual Odometry basically works under good weather and light conditions. 

However, it is highly important to choose and calibrate an appropriate camera system. In this context, a 

stereo camera has no benefit compared to a mono-camera and an illumination could improve the quality 

of the video images significantly. The control and calibration of the camera and its settings need to be 

optimally adapted to the problem and the camera installation needs to be improved in order to suppress 

reflections and pitching movements. In addition, the reliability of the algorithms shall be improved and 

verified with respect to the objectives mentioned above. All of this is scope of this report.  

Regarding Video Localisation another previous measurement run from Münsingen to Uttingen showed, 

that the camera system in use was able to detect all larger reference points (AprilTags [3], 64x64 cm), 

but it could not recognize the smaller ones (16x16 cm) for absolute train localisation at lower and higher 

velocities. 

Therefore, it is important to use tags of the right size and to mount them on appropriate spots, while the 

right size depends on the calibration of the camera system chosen for Video Localisation. It would even 

be better to use existing infrastructure elements with an exactly known position as reference points. 

Again, the algorithms and the control of the camera shall be improved regarding availability and reliability 

and further validations will be needed according to the objectives mentioned in chapter 2.1.  
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Sensor Technology Fiber Optic Sensing (FOS) 

FOS is a track-side technology for absolute localisation and determination of train position. It can be 

used as a complement method, especially for sections with limited availability of GNSS or mobile com-

munications. One advantage of this technology is that the fiber cables are already installed for data 

transfer and communications. Recent investigations showed various challenges, e.g. regarding accu-

racy, acoustic disturbances, low trains speeds etc. This report presents various approaches and intro-

duces real-time analysis. 

Measurement runs have already been made and FOS data is available. The initial situation is that the 

quality of the localisation needs further investigation and that the localisation is not satisfiable at low 

train speeds, e.g. below 40 km/h. More measurements and long-term testing are needed for validation 

of FOS. 

Also, the initial report [1] did not take into consideration the current real time requirements and was able 

to use tools for post analysis which are not available in real time. It was a proof-of-concept which ana-

lysed the whole interval of time as one block and was only run with a single set of data. The current 

report expands greatly in relation to the first one and also employs real time analysis tools which do all 

the necessary processing in real time. It also introduces new measures which are able to deal with the 

varying attenuation of each fiber channel and also have the potential for higher accuracy than simply 

using the power of the signal. 

At the moment there are investigations how these technologies can contribute to an accurate and safe 

localisation. 

SBB Innovation Project optical train localisation 

Deep-learning algorithms, especially based on convolutional neural networks (CNNs), have led to a 

huge improvement in many computer vision areas, such as object detection and distance estimation. 

For many applications, from cancer detection to self-driving cars, object detection based on CNNs has 

already been investigated and holds great promises. However, the suitability of deep learning-based 

approaches for optical train localisation has not yet been investigated. Further, the process to reach a 

SIL4 certification, as required for train localisation, is not yet well established for machine learning based 

approaches. As a first step, this report investigates the usefulness and  the reliability of the machine 

learning algorithms for optical train localisation in a first proof of concept. 
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2.3 Results and findings 

The following sections provide a summary of the main results and key findings of the relevant localisa-

tion approaches. Detailed results and findings are described in the corresponding chapters referred to 

in the text below.  

In all cases, time synchronisation among the sensors is crucial for their integration and there should be 

a high-quality reference clock for all of them. Furthermore, a valid and accurate ground truth is essential 

to assess the performance of the sensors.  

Sensor Technology Video 

The results reveal a huge potential for Visual Odometry and Video Localisation as part of a future con-

tinuous, safe and accurate train localisation. However, the excellent results obtained still have some 

room for improvement. 

Extent of use in railways: 

• Visual Odometry has a high precision for relative localisation; a combination with other sensor 

technologies, e.g. GNSS, seems very promising. 

• Video Localisation can be used standalone for absolute localisation for dedicated use cases.  

• Virtual Balises could be introduced, e.g. using infrastructure objects like point-frogs as a global 

reference for the generation of TPRs within ETCS.  

• Compact camera system setup incl. autocalibration allowing for easy installation and train lo-

calisation with minimal prerequisites (the camera shall point to the railway track). 

Visual Odometry:   

• Measurement results (< maximum values) compared to reference 

o absolute distance: accuracy > 99.4% compared to GNSS / IMU data and to GTG 

o absolute speed: precision < 1 km/h compared to GNSS / IMU data 

o absolute distance between consecutive balises pairs: < 0.7% compared to the nominal 

distance stored in database 

within an estimated systematic uncertainty of 0.8% with the current setup. In other words, the 

results are in accordance with the reference.  

• 3D train position is accurate on short scale (~few kilometres), but the drift accumulates and 

becomes relevant at higher distances. 

Video Localisation: 

• The accumulated drift in the calculated 3D train position can be reduced by referring to point-

frogs.  

• The precision, compared to GNSS / IMU considered as ground truth, is about 20 cm. In other 

words the precision of the localisation is within the accuracy of the ground truth.  

Object detection: 

• All AprilTags, located alongside the track, were successfully detected. 

• Railway point-frogs were successfully detected in all points.  

Current limitations:  

• With the current setup, there is an issue in long tunnels with poor illumination, which can be 

solved by a slightly changed setup of the infrared illuminator.  
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• The performance in challenging weather conditions like heavy rain or fog have not been tested 

yet. 

Options and future Improvements:  

• Fixed installation position of the camera system in order to minimize systematic uncertainty of 

the train localisation  

• Introduction of SLAM (Simultaneous Localisation And Mapping) algorithms for drift compensa-

tion by creating a local map with the position of natural objects like bridges, trees or buildings 

and using them as landmarks. 

Certifiability: 

• Comparison of the results achieved by Video with already certified sensor axle counter 

• Realtime capability and deterministic algorithms  

For more details see chapter 6.3.1 to 6.3.3. 

Sensor Technology FOS 

Fiber optic sensing offers an interesting potential as a supporting technology for absolute localisation 

and for determining train length and speed. Again, even though the results were very good, there is still 

a lot of room for improvement. 

Extent of use in railways: 

• Fiber Optic Sensing offers great potential as a technology not only for train localisation but also 

for train speed, length, and integrity. 

• Absolute measurements (no error accumulation) 

• Continuous measurement of train movement 

• Instantaneous snapshot of all trains moving on the track 

• Determination of train front and rear ends and train speed 

• Calculation of train length for determination of train integrity 

• Very sensitive to vibrations and trains are easy to spot due to the high amplitude vibrations 

produced 

Train localisation and train speed:  

• Localisation error: 99% < 20 meter (gaussian distribution with standard deviation ~7.7m) using 

current parameters and comparing against GNSS  

• Speed accuracy: 99 % < 2 m/s (gaussian distribution with standard deviation ~0.8m/s) using 

current parameters and comparing against GNSS 

Train length and train integrity: 

• Train length and integrity are accurately and continuously measured. 

• Train length determination error: 87% < 20m 

Current limitations: 

• Localisation at train speeds below 25 km/h is still unsatisfactory. 

• Determination of which track the train is coming from is still unsatisfactory. 

• Bridges appear as a long channel (vibrate as a whole). 

• Dependent on how the fiber optic cable has been laid out in relation to the tracks 
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• Dependent on what kind of material the fiber optic cable has been buried in 

Options and future improvements: 

• A hybrid thresholding model using both the power and entropy spectral flatness (ESF) should 

be used in order to eliminate interference from other objects completely. 

• Possibility of using concurrent different models in real time in order to increase the confidence 

in the results 

• Adjustments of parameters trading off accuracy by delay and/or noise and possibility of simul-

taneously running the analysis using these parameters in parallel and combining the results 

• Better results can be achieved by using more detailed modelling with parameters determined 

by more reference runs with better clock synchronisation 

• Real time analysis with reasonable processing power 

Certifiability:  

• Comparison of the results achieved by FOS with already certified sensor axle counter  

• Realtime capability and deterministic algorithms 

For more details see chapter 6.3.4. 

SBB Innovation project Optical train localisation 

The PoC showed that in principle deep learning-based algorithms can be used for optical train localisa-

tion. However, the algorithms still have to be refined and their reliability has to be further evaluated. 

• Optical train localisation at different lighting and weather conditions is possible without the use 

of external infrastructure (if the DfA is loaded locally onto the train). 

• Determination of track selective lateral position with a very high accuracy 

o > 90 % detection precision for most lightning conditions 

o < 70 % detection precision during night or at low visibility 

• The described approach relies on the visibility of all adjacent tracks and kilometre panels 

• Tracks around station entrances are critical and can impair the detection 

• Poor recognition rate for mast boards due to alignment of the boards on the test route 

• Good recognition rate (90%) for the kilometre panels 

• Optical kilometre panel detection combined with optical track selection and DfA integration can 

be used without GNSS for full train localisation 

• Concerning a possible certification, the algorithms have to be further tested and investigated.  

In general: More data is needed to refine and further evaluate the optical train localisation approach. 
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2.4 Content overview 

In the subsequent chapters the different localisation approaches are presented and evaluated as fol-

lows: 

Chapter 3 describes and analyses approaches for relative and absolute train localisation by applying 

video technology and deterministic algorithms for visual odometry and object detection (e.g. AprilTags, 

points, etc.) based on a monocular camera setup.  

In chapter 4 the sensor technology FOS is described for the absolute localisation of moving trains in 

real time. The detection of their position, front and rear ends, corresponding length and velocity are all 

based on certifiable algorithms. 

Chapter 5 considers a multi-sensor setup for accurate and safe localisation and the required functional 

architecture of such a sensor system enabling certification. 

Chapter 6 documents the results of the measurement series and compares different technologies re-

garding accuracy, availability and ground truth, especially with respect to SIL4 axle counters amongst 

other approaches. However, the main challenge, that needs to be solved, is to ensure an exact and 

correct time synchronisation of all onboard and trackside components. 

Chapter 7 discusses the SBB innovation project “Optical Train Localisation”. The study focusses on 

processing offline data from video streams and other sources using a deep-learning based algorithm 

approach for localisation. 
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3 Sensor Technology Video 
 

The following sections describe the activities and results regarding the sensor technology video to meet 

the aims and objectives of section 2.1. 

Section 3.1 gives a general overview and the definition of the terms used. 

Section 3.2 describes the improvements and optimisation of the camera system. 

Section 3.3 describes the procedure for the identification of the railway track and its application to the 

estimation of the camera extrinsic parameters, curvature of the track and detection of the point-frogs. 

Section 3.4 describes the procedure for calculating the train position by Visual Odometry. 

Section 3.5 describes the procedure for the detection of stopping plates and AprilTags in images col-

lected by a dedicated camera with large focal length. 

In section 3.6, the results of the analyses are shown. Different data runs are used to validate different 

use cases under different conditions. 

3.1 Introduction 

Images collected by a camera, that is located in the train and points to the railway track, can provide 

important information like train position and identification of track objects like railway points or stopping 

plates. 

With the term Visual Odometry, the procedure for calculating the local position of the train, by comparing 

consecutive image frames, is meant. Such a method can be very precise on a short scale but it suffers 

of systematic uncertainties that accumulate over time causing a drift in the calculated position. With the 

term Video Localisation, the use of Visual Odometry, enhanced by the detection of objects with a fixed 

and exactly known position, is meant. Indeed, the precision of the calculated local position of the train 

can be improved by referring to objects like point-frogs, axle counters or AprilTags [3]. The goal is to 

reset the gradually increasing drift every time the above-mentioned objects are detected by the camera. 

In the following, the procedure for calculating the train position is presented and it is based on determin-

istic algorithms only. The use of machine learning or artificial intelligent approaches are not suitable to 

reach a SIL4 certification as required for train localisation.   

Data collected on 14th June 2019, along the track from Ostermundigen to Thun, were collected by two 

camera systems: one located in the locomotive and one located in the control wagon. Data from the 

locomotive have been extensively analysed and the calculated train position is compared to other sensor 

technology (See Section 6.3). In the following months, several additional measurements were recorded 

to validate different use cases under different conditions. 
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Table 3-1: Recorded video data 

Abbr. Direction From To Date Main focus 

OT_1H forward Ostermundigen Thun 14.06.2019 Localisation 

OT_1R backward Thun Ostermundigen 14.06.2019 Localisation 

OT_2H forward Ostermundigen Thun 14.06.2019 Localisation 

OT_2R backward Thun Ostermundigen 14.06.2019 Localisation 

OT_3H forward Ostermundigen Thun 14.06.2019 Localisation 

OT_3R backward Thun Ostermundigen 14.06.2019 Localisation 

OT_4H forward Ostermundigen Thun 14.06.2019 Localisation 

OT_4R backward Thun Ostermundigen 14.06.2019 Localisation 

OT_5H forward Ostermundigen Brig 14.06.2019 Localisation 

Depot_1H stillstand Bern  03.12.2019 Camera calibration 

BSG_1H forward Bern St. Gallen 05.02.2020 Localisation with snow 

BSG_1R backward St. Gallen Bern 05.02.2020 Localisation with snow 

BB_1H forward Bern Brig 12.02.2020 Localisation with snow 

BB_1R backward Brig Bern 12.02.2020 Localisation with snow 

BL_1H forward Biel Lausanne 04.03.2020 Tilting train 

BL_1R backward Lausanne Biel 04.03.2020 Tilting train 

 

The online data collection and offline processing are based on OpenCV [4], a C++ Library for Computer 

Vision. 

3.2 Camera system 

In this section, the system in use for image recording and storage is described. The system shall collect 

images in any weather and lighting conditions. 

An infrared camera has been chosen to get brighter images with low lighting conditions, with respect to 

the images taken by a camera operating in the visible spectrum. 

The camera exposure and sensor gain need to be controlled at run time and their values set accordingly 

to the lighting conditions. 

In order to synchronize the image collected with the railway infrastructure, the timestamps from a GPS 

receiver is collected. 

Timestamps and images are stored as raw data. In the last section, a real time compression algorithm 

is introduced to reduce the data storage without losing the information contained in the collected images.  

3.2.1 Objective 

The design of the camera system, presented in the following, is developed based on the experience 

maturated during the previous measurement runs (See Section 2.2). 

Compared to the formerly used system, the main advantages and improvements are the following:  

• A monocular camera replaced the stereo camera since the absolute scale can be determined 

also with a monocular camera by the so-called optical mouse tracking (See Section 3.4.2). 

• An additional camera with a large focal length has been introduced to detect the AprilTags with 

high precision. 

• A new set of camera parameters has been adjusted to deal with the dynamic lighting conditions 

of the train surroundings. 
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• A global time reference from GPS to synchronize the collected images with the railway infra-

structure. 

• A loss-less data compression to reduce the size of the data stored.  

• Real time data processing for standstill detection of the train.  

The mounting of the system allows an unexperienced user to setup the system for data collection.  

The system supports a maximum of 6 hours of continuous operation and recording and is limited by the 

data storage and battery duration. 

3.2.2 Camera box 

The system for the image acquisition is composed as follows: 

• Camera box containing  

o 2 IR Cameras (Model UI-3240CP-NIR-GL revision 2) with different focal lengths (8mm 

and 50mm) pointing towards the railway track (front camera) and pointing towards the 

side (tag camera) respectively. The front camera (8mm) is mainly used for relative lo-

calisation while the tag camera (50mm) is optimised to detect small objects like AprilT-

ags that can be used for absolute position reference.   

o 2 NIR Illuminators (FLTT-808-1.8W-300m-CAP) for better illumination of dark scenes 

• GPS Receiver (GlobalSat BU-353) to record the timestamp for the synchronization with the 

railway infrastructure. 

• Rapid Prototyping Computer provided by Speedgoat. The processor is an Intel® Core™ i7-

6700TE 8-cores, 2.40 GHz. 

• Battery pack containing two batteries (Tattu 22.2V 15C 6S1P UAV Lipo) from 12000 and 16000 

mAh each.  

Figure 3-1 shows the system operating during the data recording in the area of Bern on 14th June 2019. 

As it can be seen in the picture, the connections between the camera box and the rapid prototyping 

computer were not fully integrated, making the installation in the locomotive not straightforward. 

Figure 3-1 The camera setup operating on 14th June 

2019 during the drive from Ostermundigen to Thun. 

mailto:CPU@2.40
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Figure 3-2 shows an improved camera box. Inside the box, the illuminators are connected to the TTL 

Converters which are powered from USB. The battery connector is connected to two DC/DC converters 

which convert the 24V input voltage into 12V for the illuminators. The cameras are powered directly over 

USB3. 

The following interfaces of the box need to be connected: 

• Battery connector to the 24 Volt battery 

• USB3 (for Cameras) to the Rapid Prototyping computer 

• USB (for Illuminator) to the Rapid Prototyping computer 

• RS232 (for Illuminator) to the Rapid Prototyping computer 

 

 

Figure 3-2 Front and Back view of the camera box 

Different covers can be applied depending on the type of cameras and illuminators needed for the im-

ages to be taken. For example, if no AprilTags are located along the path, there is no need for the 

second camera and its illuminator. 

Figure 3-3 shows the camera setup in operation on a RABDe 500, during the run from Biel to Lausanne 

(BL_1H and BL_1R). 

USB3 for  
Front and Tag 
Cameras 

USB power for  
TTL Converter 

RS232 for  
Front and Tag 
Illuminator 

battery  
connector 
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Figure 3-3 The camera box mounted on a RABDe 500, during the run from Biel to Lausanne. 

3.2.3 Camera settings 

The IR Camera has different parameters that have to be adjusted for an optimal image collection based 

on the dynamic lighting conditions of the train surroundings. In the following, the relevant parameters 

are described.  

• Shutter mode: global 

“On a global shutter sensor, all pixel rows are reset and then exposed simultaneously. At the 

end of the exposure, all rows are simultaneously moved to a darkened area of the sensor. The 

pixels are then read out row by row. 

Exposing all pixels simultaneously has the advantage that fast-moving objects can be captured 

without geometric distortions.” [5]. This allows a simultaneous measurement of the position of 

the entire imaged area. 

 

Figure 3-4 Global shutter sensor in live mode (Source: [5]). 
• Pixel Clock: 86 MHz. 

It is frequency at which the sensor cells can be read out. Its value can be set between 7 and 86 

MHz. The selected value is 86 MHz in order to reach the maximum frame rate. 

• Frame Rate: 59.82 Hz. 
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The maximum frame rate is chosen to reach the highest possible resolution in the position es-

timation in the analysis. 

• Image size: 1280x1024 pixels 

The maximum number of pixels is selected to acquire images with high resolution for the posi-

tion estimation in post-processing analysis. 

• Image bit depth: Grayscale with 10 bits. 

The increased data depth is necessary to cope with the high dynamic range in the scene illumi-

nation caused by possible shadow casts on sunny days or transitions in and out of a tunnel. 

• Automatic functions: 

o Black Level Correction: auto. 

“The black level correction of the camera can improve the image quality under certain 

circumstances. By default, the sensor adjusts the black level value of each pixel auto-

matically. If the environment is very bright, it can be necessary to adjust the black level 

manually.” [5]. It is used for a maximum usage of the available gray-level depth in de-

pendency on the scene illumination. 

For more info: https://en.ids-imaging.com/techtipps-detail/en_techtip-black-level.html 

o Automatic Exposure Shutter (AES): active (See Section 3.2.4) 

The control of the average brightness is achieved by adjusting the exposure. The bright-

ness reference is controlled depending on the illumination of the railway track. Modifi-

cation of the exposure does not amplify noise from the sensor in the acquired image. 

o Automatic Gain Control (AGC): active (See Section 3.2.4) 

o Brightness Reference: depending on the region of interest (See Section 3.2.4). 

The target brightness used as reference by AES and AGC. 

o Automatic Frame Rate (AFR): not used. Frame rate is fixed. 

o Maximum Exposure: 10 ms. 

Once the frame rate is fixed, the maximum exposure is determined (16.7 ms for the 

current settings). This value is further reduced to 10 ms in order to lower the motion 

blur in the image. 

o Control Speed: 100%.  

The speed of the control increments can be set in the range from 0 to 100%. The max-

imum value is selected in order to deal with rapid change of illumination due to tunnels 

or shadows.    

o Hysteresis: 10  

“The automatic control feature uses a hysteresis function for stabilization. Automatic 

control is stopped when the actual value lies in a range between (setpoint - hysteresis 

value) and (setpoint + hysteresis value). It is resumed when the actual value drops 

below (setpoint - hysteresis value) or exceeds (setpoint + hysteresis value). If the hys-

teresis value is increased, the control function will stop sooner. This can be useful in 

some situations.” [5]. 

The maximum hysteresis value is applied (default is 2) to collect a stable image bright-

ness during transition between different sensor gain factors. 

o Log-mode: Auto (anti-blooming). 

“In Log-mode a threshold defines at which point the linear sensitivity pass over into a 

logarithmic characteristic. At very short exposure times (less than 0.1 ms) there may 

occur e.g. so-called crosstalk effects in the global shutter mode, which have the effect 

that the image content appears brighter in the vertical from top to bottom” [5]. 

By using the option Auto, the automatic control of the anti-blooming is based on the set 

exposure time. It provides an additional extension of the perceived brightness range 

through logarithmic compression of very bright scene elements. 

 

 

https://en.ids-imaging.com/techtipps-detail/en_techtip-black-level.html
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3.2.4 Image control in bright and dark scenes  

The image acquisition needs to deal with the variable illumination of the scene the camera is pointing 

to. For example, shadow casts on sunny days or transitions in and out of a tunnel lead to a quick change 

in the lighting conditions the camera shall deal with. A fixed value of the exposure would result in images 

that are not well exposed in condition of high brightness dynamic range.  

The camera exposure time and sensor gain are investigated and varied in order to get clear images for 

the calculation of the train position.  

For practical purposes, the analysis presented has been tested on images containing AprilTags only. It 

shall be noted that the method proposed and the thresholds applied do not depend on the structure of 

the object on focus but on the illumination of the scene.  

3.2.4.1 Impact of exposure time and sensor gain on the image brightness  

Changing the exposure time increases the amount of light collected. This is the “natural” way to increase 

the brightness of the collected image.  

Figure 3-5, Figure 3-6 and Figure 3-7 show the results of different exposure times in different conditions 

of illumination. As the illumination decreases, higher exposure times are preferred. Figure 3-7 a) shows 

that the amount of light collected is too high even with low exposure time. In this case, an even lower 

exposure time should be set. According to Figure 3-6, it is clear that with the maximum exposure (Figure 

3-6 f), an image with the right brightness levels can be taken. In very dark scenes, as in Figure 3-5, 

increasing the shutter exposure time is not sufficient. In such a case, the sensor gain of the camera shall 

be increased. 

It shall be noted that the maximum exposure time is limited by the desired frame rate that is set to a 

fixed value. Furthermore, an exposure time, that is too high, can cause motion blur in the collected 

image, when the projected point in the image illuminates multiple pixels in the image due to high velocity 

of the train. The motion blur is visible in Figure 3-8. The railway track in the image is not sharp due to 

motion blur likely caused by the high speed of the train combined with the high exposure due to the poor 

illumination of the scene. 

   

Figure 3-7 Images with high illumina-

tion (7000 lux) with different exposure 

times:  

a) 0.5 ms b) 1 ms  

c) 2 ms d) 5 ms  

e) 10 ms f) 16.7 ms. 

Figure 3-5 Images with very low illu-

mination (50 lux) with different expo-

sure times:  

a) 0.5 ms b) 1 ms  

c) 2 ms d) 5 ms  

e) 10 ms f) 16.7 ms. 

Figure 3-6 Images with low illumina-

tion (200 lux) with different exposure 

times:  

a) 0.5 ms b) 1 ms  

c) 2 ms d) 5 ms  

e) 10 ms f) 16.7 ms. 
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Figure 3-8 Image collected from a drive from St. Gallen to Bern on a cloudy day in winter. Due to the poor illumination 

of the scene, the exposure time was automatically set to a high value that causes motion blur resulting in an unsharp 

image. 

Whenever the increase of the exposure time cannot lead to the desired image brightness, the sensor 

gain shall be increased, once the exposure time is set to the maximum value.  

Figure 3-9 shows images taken at low illumination. Different sensor gain factors were manually applied 

in a) – e), while the camera automatic sensor gain control (AGC) is applied in f). 

It shall be noted that the gain amplifies incoming signals from the scene as well as camera noise. 

 

Figure 3-9 Images with very low illumination (50 lux) at fixed exposure time (16.7 ms). Different gain factors are 

applied: a) no gain, b) manually set to 33%, c) manually set to 66%, d) manually set to 99%, e) manually set to 

99% and gain boost active, f) set to 84% by the automatic gain control. 
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3.2.4.2 Automatic control of exposure time and sensor gain 

The automatic control for exposure time (AES) and sensor gain (AGC) of the camera adjust the expo-

sure and sensor gain based on the brightness of the entire image. The target brightness is needed as 

reference for the control of automatic functions. This value can be increased (decreased) in case the 

scene is too dark (bright).  

An automatic control function, that is based on the brightness information contained in the entire image, 

is not optimal and can cause errors in scenes with different illuminations (i.e. scene with shadows on 

the railway track). The scene under investigation can be restricted to a region of interest, i.e. the railway 

track regarding images collected by the front camera and the expected location of the object to be 

detected regarding images collected by the tag camera. For example, the AprilTags were placed on the 

catenary masts at a fixed height, which defines the expected location for object detection.   

The solution adopted relies on the automatic control functions for exposure and sensor gain by using a 

brightness reference, which is not based on the entire image but on the above-mentioned region of 

interest. 

Once the front camera is placed on the windscreen, a rectangular region of interest in the track area is 

determined automatically so that the track can be identified. 

The region of interest of the tag camera is defined as a horizontal strip with constant height. The height 

is defined so that the AprilTag shall lie within the strip in the collected image. 

Figure 3-10 (left) shows the image collected with AES active using the default value of the target refer-

ence brightness, that sets the exposure time to 7.2 ms. It can be seen that the region of interest (for 

practical purposes, a square instead of a strip containing the AprilTag is taken) is not sufficiently ex-

posed.  

Figure 3-10 (right) shows the image collected with AES active using an “adaptive” value of the target 

reference brightness based on the number of low-brightness pixels in the region of interest. The resulting 

exposure time was set to the maximum. The region of interest is well exposed. 

     

Figure 3-10 (Left) Image taken using the AES with default brightness reference value. The region of interest is too dark. 

(Right) Image taken using the AES with calculated brightness reference value. The exposure of the region of interest is 

sufficient. 

3.2.5 Camera calibration 

Ideally, the focal length of a camera is fixed by construction (8 mm for the front and 50 mm for the tag 

camera), but slight differences can be found from the nominal value. Similarly, a small deviation from 
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the nominal value of the principal point (located at the center of the image) occurs. The focal length and 

the principal point of the camera are measured by means of a calibration procedure. 

The pinhole camera model is a mathematical relationship between a point in the real world and a point 

in the image plane. As is can be seen in Figure 3-11, in the image plane, the x values increase along 

the horizontal axis, the y values along the vertical one and the z values along the optical axis (i.e. the 

direction of the train motion).  

 

Figure 3-11 The camera pinhole model (Source: https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibra-

tion_and_3d_reconstruction.html). 

The relation between the 3D coordinates of a point in the real world and a point in the collected image 

is given by the following formula: 

 

where s is the absolute scale, (u,v,1) are the homogeneous coordinates of the point in the image plane, 

(X,Y,Z,1) are the homogeneous coordinates of the 3D point in the real world, fx and fy are the coordinates 

of focal length, cx and cy are the coordinates of the principal point, r and t are the components of the 

rotation and translation of the camera reference system with respect to the real world. 

The calibration of the camera allows for the measurement of the camera intrinsic parameters as well as 

the distortion coefficients [6] given a list of images collected.  
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Figure 3-12 shows a list of images collected for camera calibration. The calibration sheet (chessboard) 

was placed at different distances with different poses. 

 

Figure 3-12 From left to right: Image for calibration of the two sets of front cameras and the two sets of tag cameras. 

The Camera Calibration Toolbox for MATLAB® [7] is used as reference for the estimation of the intrinsic 

parameters and distortion coefficients. 

Table 3-2 Parameters calculated by the calibration. The uncertainty in parenthesis refers to the last digits of the calcu-

lated value. 

 Front (1) Front (2) Tag Old (1) Tag Old (2) Tag (1) Tag (2) 

fx (px) 1523 (2) 1531 (2) 9402 (424) 9300 (267) 9487 (83) 9565 (82) 

fy (px) 1525 (2) 1533 (2) 9435 (437) 9346 (249) 9499 (81) 9562 (75) 

cx (px) 644 (2) 624 (3) 958 (332) 611 (0) 640 (0) 640 (0) 

cy (px) 512 (2) 485 (2) 606 (237) -8 (0) 512 (0) 512 (0) 

k1 -0.225 (3) -0.218 (3) 0.57 (43) 0.08 (39) 0.24 (15) 0.31 (16) 

k2 -0.143 (17) 0.119 (12) -7 (25) 51 (28) 16 (41) 6 (43) 

p1 -0.0007 (2) -0.0003 (2) 0.03 (2) -0.04 (1) -0.001(2) -0.004 (2) 

p2 0.0006 (2) 0.0004 (3) 0.03 (3) -0.009 (4) 0.0013(1) 0.002 (1) 

 

The lenses used in the tag cameras have long focal length (50 mm) meaning that images are taken far 

away from the calibration sheet. This reduces the perspective and makes the light rays close to parallel, 

causing instability of the mathematical solution, especially when solving the lens distortion parameters 

k1, k2, p1, p2 [6], as can be seen in Table 3-2, where the error in the measurement of those parameters 

is extremely high. For this reason, the principal point cx and cy (marked in red) of the tag cameras was 

not included in the calibration procedure and the values were set to the optimal values, which is the 

center of the image with resolution 1280x1024 pixels. 

3.2.6 Time synchronization for real-time analysis  

In order to synchronize the data collected from the camera with the surrounding infrastructure, a time 

synchronization based on the GNSS global timing is needed. 

For considerations about the latency of the system in use, refer to section 6.2.  

3.2.6.1 Local time reference from camera system 

Modern Linux operating systems provide several clock sources: 

• Real time: clock, which should reflect the actual real time and is affected by discontinuous 

jumps in system time and by the incremental adjustments. 

• Monotonic: clock, which never decreases but is affected by the incremental adjustments. 

• Monotonic raw: hardware counter, usually the Time Stamp Counter (TSC) inside the proces-

sor, that is not affected by the incremental adjustments. 
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3.2.6.2 Global time reference from GPS 

Satellites carry very stable atomic clocks, that are synchronized with one another and with the ground 

clocks. 

A GPS Receiver is connected to the Rapid Prototyping computer through the USB port. The GPS re-

ceiver transfers the information in form of NMEA sentences [8] with a rate of 9600 bits per seconds.  

The NMEA sentences contain geolocation and time information. The receiver can be configured in order 

to select only the NMEA sentences relevant for the time analysis. By selecting only part of the whole 

NMEA sentences, the latency in the GPS reception can be reduced. NMEA sentences of the ZDA, GGA 

and RMC types contain date and time information. Using the information carried by the GPS signal, a 

time resolution of one second can be reached. 

The arrival time of the NMEA sentence depends on the length of the sentence, that is variable. The 

monotonic raw of the arrival time of the first byte of the NMEA sentence is saved together with the GPS 

time, since it does not depend on the above-mentioned factors and has a nanosecond resolution.  

In case of poor GPS coverage (when the GPS receiver’s antenna receives less than 4 satellites), a GPS 

fix is not received and the GPS time cannot be trusted. The presence of a GPS fix is saved to assess 

the quality of the received time during post-processing. 

GPS data are analyzed in real-time in a dedicated Thread. The GPS time information is saved together 

with each frame, even if there is no fix.  

3.2.6.3 Combination of global and system time 

The following timestamps are saved together with the acquisition of the camera frame: 

• Internal Image Time Counter (IITC): timestamp indicating the time of the complete image cap-

ture with a resolution of 0.1 microsecond.  

• System Real Time (SRT): resolution of 1 nanosecond. 

• System Monotonic Raw (SMR): resolution of 1 nanosecond. 

• GPS Time (GPS): resolution 1 second. 

• GPS Monotonic Raw (GMR): arrival time of the first NMEA sentence, resolution 1 nanosec-

ond. 

 

IITC, SRT and SMR have high resolution but they suffer of a small drift and need to be referred to a 

global time source. A combination of the system time information of the incoming image frame with the 

GPS global time is needed. 

During initialization of the data acquisition code, the quality of the GPS signal (fix) is investigated. If the 

GPS signal is valid, the UTC time from GPS is taken as reference (T0,GPS) and its arrival time as offset 

(offsetGMR). If the GPS signal is not valid, the system real time (T0,SRM)  is taken as reference and the 

system monotonic raw time as offset (offsetSMR).  

For any incoming camera frame, the combined time is calculated and saved together with the image 

raw data: 

 

A possible case is, that during initialization the fix was not available and the GPS time is not used as 

reference for the calculation of the combined time. A fix could come after a while, so during post-pro-

cessing a GPS-based combined time can be always be calculated. 
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Figure 3-13 shows the comparison between the GPS time (resolution of 1 second) with the calculated 

combined time (resolution of 1 nanosecond).  

 

Figure 3-13 The UTC time from GPS (resolution of 1 second) is compared with the combined time (resolution 1 nanosec-

ond). 

3.2.7 Lossless data compression  

The resultant 10-bit images occupy 2 bytes (16 bits) per pixel in memory. For storage, however, a simple 

pixel packing scheme where 4 pixels (40 bits) are packed in 5 bytes can be used in order to avoid this 

redundancy. 

The advantage of using such a simple packing scheme (5 bytes for every 4 pixels) is its low resource 

utilization (high speed) and also the fact that every image uses exactly the same amount of storage (as 

long as all the images have the same dimensions) making it very easy to do random searches on a 

stream of images. 

But in order to actually reduce the entropy of the image data, a lossless image compression algorithm 

should be used. For most “natural” images, compression ratios between 50% and 80% are to be ex-

pected, depending on the amount of noise present on the captured images. Lossless algorithms com-

pression ratios are highly dependent on the amount of noise contained in the lower bitplanes of images, 

which is general not compressible. 

Also, a “fast enough” algorithm should be applied in order to compress the video stream coming from 

the camera(s). In our case, each camera produces 1280x1024 gray level 16-bit images (2,621,440 bytes 

per image at 2 bytes per pixel) at 60 Hz. The system must be capable of compressing 60 fps per camera. 

It should also be pointed out that even compressed frames will be around a megabyte each (lossless 

compression) so the storage subsystem should also allow for the writing of at least around 60 megabytes 

per second per camera. 

 

3.2.7.1 The FELICS algorithm 

A fast implementation of the FELICS algorithm with tunable parameters for 16-bit pixels was developed 

and integrated into the solution. 
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The FELICS algorithm [9] is among the fastest lossless compression algorithms available and was used 

on the NASA Mars Exploration Rover embedded in the Solid-State Recorder (SSR) of the spacecraft. 

It uses a single pass in raster order and uses the top and left pixel values in order to predict the current 

pixel and encode the difference between the predicted and actual values. Depending if the actual pixel 

is between the lower and higher values of its neighboring pixels, the error is encoded either using a 

range code (inside) or a golomb-rice code [10] with parameter k. 

By choosing how to handle this parameter k, we can make the algorithm run faster than using a model 

to predict its value but compression may suffer. The user can choose how to handle this parameter in 

order to tune the speed and/or compression ratio of the algorithm. 

Due to the varying size of the compressed images, it is not possible to have random access to a file 

composed of many concatenated images. In order to fix this, we have implemented a JFIF style byte 

stuffing [11] so that it is guaranteed that a certain byte value will never appear in the resulting byte 

stream except as a prefix for its immediately following byte. In this case, the byte composed of all set 

bits (255 in decimal or FF in hexadecimal) is replaced by the 2-byte sequence (FF 00 in hexadecimal). 

Following the JFIF standard [12], the start of an image is signaled by the sequence FF E8 in hexadecimal 

and the end is signaled by FF E9, also in hexadecimal. As we substitute every occurring FF in the 

generated stream by a FF 00, it is not possible to encounter any other sequence that starts with FF in 

the stream unless we have actually requested it to be there. 

This way, it is quite trivial to have random access to a file containing multiple images merely by searching 

for an FF E8 (start) and its following FF E9 (end). 

Table 3-3 summarizes the results of the compression algorithm applied to drive OT_1H containing 

57000 frames. 

Table 3-3 The results of the loss-less compression. 

Dataset Raw image size  
(no pixel packing)  

Raw image size  
(pixel packing)  

Compressed  
image size  

Compression  
speed  

OT_1H 2621,440 KB 1638,400 KB 1057,584 KB 111 frames/sec 

 

Even though the input image read from the camera is composed of 2 bytes per pixel (16 bits), the actual 

image is composed of only 10 bits per pixel, which makes its packed size equal to 1280 * 1024 * 10 / 8 

= 1,638,400 bytes per frame. Using this as the original uncompressed size, the algorithm reduces the 

amount of storage by a factor 0.6 on average. For the test system, the compression speed was meas-

ured to be around 111 frames per second which allowed it to compress the images to be stored when 

using a single camera, which requires at least a compression performance of at least 60 fps. The per-

formance of the algorithm has been tested on the Rapid Prototyping computer (See Section 3.2.2). 
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3.3 Railway identification and extrinsic camera calibration 

The identification of the railway track in the collected image is described in section 3.3.1. Three algo-

rithms are evaluated in order to identify the track in every collected image frame.  

The position of the railway track in the image is the fundamental brick for several analyses: 

• Estimation of the camera extrinsic parameter (Section 3.3.2): as described in section 3.2.5, the 

determination of the camera extrinsic parameters is one of the steps required to calculate the 

position of an object in the real world from the collected image. An automatic procedure for the 

estimation of the camera extrinsic parameters from the position of the track in the image, is 

described.  

• Pitch detection and compensation (Section 3.3.3): the pitch of the train can be determined from 

the position of the track in the collected image. Variations of the pitch, corresponding to steep 

increases or decreases of the train speed, can be compensated.  

• Detection of railway points (Section 3.3.4): the precision of the calculated local position of the 

train can be improved by referring to point-frogs that have a fixed and exactly known position. 

Railway points can be identified based on the intersection of the main track with the side tracks 

and the position of the point-frog in the image can be determined.  

• Curvature of the track (Section 3.3.5): from the position of the railway track in the collected 

images, the yaw rate can be determined. By combining the yaw rate with the train speed, the 

curvature of the track is determined. 

3.3.1 Automatic track detection 

The railway track driven on by the train can be identified in the collected image, assuming that the 
camera points to the railway track. The procedure explained in the following is the fundamental brick for 
a correct estimation of the camera intrinsic parameter (See Section 3.3.2). 

The first step is to find gradient edges in the collected image. Once the image is processed, the line 
detection algorithm is applied to match the edges in order to form a line. 

Three different algorithms are investigated. For each algorithm, the parameters have been varied and 
the optimal values and thresholds are chosen in order to identify the railway track.  

3.3.1.1 Canny contour detection and Hough transform 

The OpenCV function Canny [13] is used to spot contours within the image. The following parameters 

are used: 

• Lower (upper) threshold of the hysteresis procedure set to 100 (300). 

• Aperture for the gradient operator set to 3. 

The OpenCV function HoughLinesP [14] is then applied with the following parameters: 

• Accumulator threshold parameter set to 300, 

• Minimum line length set to 300, 

• Maximum allowed gap between points on the same line to link them set to 200. 

Figure 3-14 shows the images after the processing steps. The leftmost figure is the original picture, 
followed by the picture after applying the Canny edge detection (Figure 3-14 middle) and after that, the 
picture with the detected lines superimposed (Figure 3-14, right). The lines in yellow are the lines 
detected from the algorithm while the lines in green are the two identified as belonging to the railorad 
track. 
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Figure 3-14 (left): Original picture, (middle): Picture after Canny contour detection, (right): Picture after HoughLinesP line 

detection 

3.3.1.2 Morphological skeleton and Hough transform 

The goal of the morphological skeleton is to reduce the redundant content of an image to known shapes 
with 1-pixel width.  

The process involves two steps: 

1. Image thresholding with adaptive threshold to reduce the grayscale image (Figure 3-15 left) to 
a binary one (Figure 3-15 right). The OpenCV function adaptiveThreshold [15] is not used, 

since it adapts the threshold based on the information of neighboring pixels. A fixed threshold 
based on the brightness of the image region in front of the train is applied.  

2. Iterative erosion and dilation in order to have the skeleton image (Figure 3-16).   

The OpenCV function HoughLinesP is then applied with the following parameters: 

• Accumulator threshold parameter set to 200, 

• Minimum line length set to 300, 

• Maximum allowed gap between points on the same line to link them set to 500. 

The identified track lines are shown in green in Figure 3-16 (right). The yellow line (difficult to be seen 
in the figure, since it is very close the green one) is a detected line not associated to the track (it is 
probably the outer part of the track). 

  

Figure 3-15 (left): Original picture, (right): Picture after adaptive threshold      
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Figure 3-16 (left): Picture after iterative erosion and dilation, (right): Picture after applying the HoughLinesP line detec-

tion     

3.3.1.3 Fast line detector 

The OpenCV class FastLineDetector [16] based on [17] has been tested.  

The class performs first an edge detection using Canny and then identifies line segments from the 
resulting image. The parameters applied are listed in the following: 

• Lower (upper) threshold of the hysteresis procedure set to 100 (300). 

• Aperture for the gradient operator set to 3. 

• Minimum length of the calculated segment set to 100 pixels 

• Minimum distance between the expected and the measured segment point to be considered 
an outlier set to 1.4 (default value). 

• Incremental merging of line segments deactivated. 

   

Figure 3-17 (left): Original picture, (middle): Segments found by the Fast line detector, (right): Lines found by the Fast 

line detector.  

The fast line detector was found to give the highest track detection efficiency with lowest misidentification 

rate among the algorithms taken into consideration. 

3.3.1.4 Procedure for track identification 

The identification of the railway is divided into two parts: The first part is covered, when the train is at 

rest, the second part takes place, when the train is in motion.  

The goal of the first part (initialization) is the determination of the starting point of the railway track 

situated at the bottom of the image and the estimation of the camera extrinsic parameters (Section 3.3.2) 

with the train at rest. This phase ends, once the tilt – pitch – yaw angles are estimated with a desired 

precision. In case the angles cannot be estimated with a desired precision, an acoustic signal will alert 

the user, so that the camera shall be placed elsewhere. The same happens in case of occlusion of the 

railway track in the image. 
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The goal of the second part is the identification of the driven railway track and side tracks when the train 

in motion (Section 3.3.4). 

3.3.2 Automatic extrinsic camera calibration  

The camera extrinsic matrix can be defined by three Euler angles (pitch, yaw and tilt according to Figure 

3-18). The pitch is defined as the rotation angle around the side-to-side axis. The yaw is defined as the 

rotation angle around the vertical axes. The tilt is defined as the rotation angle around the front-to-back 

axis (the focal axis).  

 

Figure 3-18: Sketch of the Stadler EC250 with the reference system that shows the yaw, pitch and tilt rotations around 

the axis (Source: https://bahnblogstelle.net/2017/03/28/stadler-ec250-schweizer-zughersteller-praesentiert-neuen-hoch-

geschwindigkeitszug-video/).  

In this section, the procedure for the estimation of pitch, tilt and yaw based on the image of the railway 

track is described.  

3.3.2.1 Pitch and Yaw estimation 

The method proposed is based on the calculation of the vanishing point (VP) of the railway track in the 

camera image. The vanishing point is defined as the point on the horizon line where parallel lines con-

verge. This point depends on pitch and yaw angle. The point does not give any information regarding 

the tilt angle. This can be intuitively clarified, since rotating the camera around the focal axis does not 

change the vanishing point of the railway track. 

The yaw angle  and the pitch angle  are estimated using the following formula:   

 

where Vx and Vy are the coordinates of the detected vanishing point in the image, cx and cy are the co-

ordinates of the principal point and f the focal length. 

Figure 3-19: shows the detected railway track (green) and the intersection, that defines the vanishing 

point (cyan). 

https://bahnblogstelle.net/2017/03/28/stadler-ec250-schweizer-zughersteller-praesentiert-neuen-hochgeschwindigkeitszug-video/
https://bahnblogstelle.net/2017/03/28/stadler-ec250-schweizer-zughersteller-praesentiert-neuen-hochgeschwindigkeitszug-video/
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Figure 3-19: The detected railway track (green) and the vanishing point (cyan) are shown in the image collected. 

3.3.2.2 Tilt estimation 

The tilt is estimated by selecting a region in front of the train centered on the railway track. The region 

is rectified by applying the calculated pitch and yaw and transformed to gain a bird-eye top-view.  

Figure 3-20: shows the result of the track detection algorithm applied to the recognition of the sleepers 

(red segments). As it can be observed, it is difficult to identify the sleepers since the image gradient is 

poor. The identification strongly depends on the illumination of the scene and on the shape of the sleep-

ers, that cannot be guaranteed to be smooth. In order to measure the tilt with high precision (less than 

1 degree), a direct measurement from the sleepers is not suitable. 
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Figure 3-20: A bird-eye view of the railway track is shown. The sleepers (red segments) are difficult to be identified by 

the fast line detector algorithm.  

The railway track width in the image slightly depends on the camera tilt. A subpixel precision would be 

required in order to measure small camera tilt directly from the track width. A possible solution could be 

to measure the track width in the image rotated by large tilt angles, where the track width changes 

significantly. A fit of the measured track widths with a cosine function should give an estimation of the 

camera tilt. 

Figure 3-21 shows the images transformed according to a tilt angle of -45° (left), 0° (center) and 45° 

(right).  

   

Figure 3-21 The bird-eye view image is rotated by a 45° (left) , 0° (center) , 45° (right) tilt angle and the track is identi-

fied. 

The fit algorithm gives a tilt angle of 4°, that is not in agreement with a rough empirical estimation.  

In order to analyze the collected data, an empirical evaluation of the tilt angle can be performed by 

comparing the original image with the rectified one. By constraining the rectified image to have sleepers 

parallel to the bottom of the image, a rough estimation of the tilt can be given. 

Figure 3-22 (left) shows the image from a bird eye view rectified only for yaw and pitch. Figure 3-22 

(right) shows the image rectified with the addition of a tilt angle of ~ 2.9 ± 0.2 degrees estimated empir-

ically. 
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Figure 3-22 (left): The image rectified for pitch and yaw estimation and transformed to a bird-eye view. The sleepers are 

not parallel to the bottom of the image, meaning that the tilt shall be corrected, (right): By correcting the tilt of the camera, 

the sleepers are parallel to the bottom of the image.   

3.3.3 Pitch detection and compensation 

As described in section 3.3.2.1, the pitch can be estimated, once the vanishing point is found in the 

image. 

Figure 3-23 shows the difference (in blue) of the pitch, measured in all the image frames, with respect 

to one measured during the calibration, where the train was at rest. In red, the train speed is displayed. 

Negative (positive) values of the pitch difference correspond to a camera looking up (down) with respect 

to the initial pose. Currently, with the actual precision in the measurement of the track position, it is not 

possibile to correlate the change of the pitch to a change of the train speed. However, it can be observed 

that, as soon as the drive begins, the pitch difference tends to negative values (the red dotted line 

highlights the frame when the train starts).  

 
Figure 3-23: The difference (in blue) of the pitch measured during the whole measurement run, with respect to one 

measured during the calibration in the initial frames, where the train was at rest.  In red, the train speed is displayed. The 

red dotted line highlights the frame when the train started. 
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With a more precise track identification, the calculated pitch difference can be used to correct the 

calculated train position. 

3.3.4 Railway point detection 

The identification of railway points in the image can be used as global reference for the calculation of 

the train position with visual odometry (results see section 6.3.3). 

For the track identification during drive, the images collected from the camera are rectified by applying 

the camera extrinsic parameters measured in the initialization phase and transformed to obtain a bird-

eye view in a region of interest in front of the train. 

Possible railway track candidates are detected using the line detection algorithm described in Section 

3.3.1 with the constraint that the track width shall be close to the track width measured in Section 3.3.2 

(initialization phase). 

Figure 3-24 (left) shows the collected image with the selection of a region of interest (in yellow)  in front 

of the train 6 meters long and 6 meters wide. The bird-eye view of the selected region is shown in Figure 

3-24 (right) where the detected lines are highlighted: the driven track is found and shown in green, while 

a side track is detected and shown in red. 

  

Figure 3-24 (left): A region of interest of 6x6 meters is defined in the collected raw image, (right): the region of interested 

is rectified and transformed according to a bird-eye view and the main track (green) and a side track (red) are identified. 

The performance of the identification of the driven track and the point recognition were tested using the 

dataset OT_1H. The driven track was idenfitied in 99.4% of the frames.  

3.3.4.1 Point-Frog detection 

The intersection between the main with the side track defines the frog of the point. Figure 3-25 (left) 

shows the detection of the frog (circle in cyan), where the driven track (green) and side track (magenta) 

intersect. 
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Figure 3-25 Left: The point-frog (circle) is identified from the intersection of the main track (green) and the side track 

(magenta). Right: A small deviation (~1 meter) between the identified and the truth point-frog is observed. 

The performance of the point recognition is evaluated in the following. Table 3-4 shows the type of 

points, that are visible in data collected, and the result of the detection. The performance of the detection 

of curved points could not be tested since they were not present in the driven path.   

Table 3-4: Results of the point detection. The latitude, longitude and ID of the points are taken from the topology database 

(DfA). The column Frame ID refers to the collected image frame, where the train passes the detected point. The column 

N Frames refers to the number of frames where the frog is detected. In most of the cases, the number of frames a point 

frog is detected increases the precision of the measurement of its position.  * the point was detected but its position 

deviates (> 5 meters) from the truth. 

Point ID Type Latitude Longitude Detected? Frame ID N Frames 

 OST 19 Einfache Weiche 46,9533 7,4826 yes 4813     26 

OST 20 Einfache Weiche 46,9529 7,4827 yes 5060     23 

OST 55 Einfache Weiche 46,9483 7,4861 yes 6593     16 

GUE 1 Einfache Weiche 46,9381 7,4985 yes 9487     11 

GUE 4 Einfache Weiche 46,9364 7,5017 yes 9898      9 

GUE 9 Einfache Weiche 46,9359 7,5026 yes 10134     10 

GUE 31 Einfache Weiche 46,9335 7,5068 yes 10813     10 

GUE 28 Einfache Weiche 46,9324 7,5088 yes 11129     10 

GUE 47 Schnellfahrweiche 46,9317 7,5101 yes* 11401      5 

GUE 48 Schnellfahrweiche 46,9307 7,5118 yes* 11502     11 

GUE 52 Einfache Weiche 46,9288 7,5151 yes 12058     11 

GUE 55 Einfache Weiche 46,9276 7,5173 yes 12548     10 

RUB 1 Einfache Weiche 46,9037 7,5429 yes 18074     10 

RUB 12 Einfache Weiche 46,8947 7,5481 yes 19773     11 

MS 1 Einfache Weiche 46,8803 7,5573 yes 23005     11 

MS 18 Einfache Weiche 46,8710 7,5600 yes 24818     12 

MS 27 Einfache Weiche 46,8695 7,5605 yes 25093     11 

WCH 1 Einfache Weiche 46,8468 7,5672 yes 29445     10 

WCH 5 Einfache Weiche 46,8444 7,5679 yes 29873     10 

WCH 14 Einfache Weiche 46,8421 7,5686 yes 30242      9 

WCH 20 Einfache Weiche 46,8375 7,5699 yes 31017     10 

UTI 1 Einfache Weiche 46,8003 7,5810 yes 37900     10 

UTI 8 Einfache Weiche 46,7910 7,5837 yes 39527     10 

UTI 11 Einfache Weiche 46,7906 7,5839 yes 39679     10 

TH 119 Kreuzung 46,7604 7,6208 yes 49853     28 

TH 131 Kreuzung 46,7595 7,6225 yes 50788     31 

TH 181 Einfache Weiche 46,7567 7,6267 yes 52936     33 

TH 183 Kreuzung 46,7565 7,6270 yes 53153     27 

TH 185 Kreuzung 46,7557 7,6279 yes 53752     35 

TH 187 Kreuzung 46,7554 7,6282 yes 53979     34 

TH 198 Kreuzung 46,7551 7,6286 yes 54210     37 

TH 219 Kreuzung 46,7548 7,6289 yes 54473     35 

TH 221 Kreuzung 46,7545 7,6292 yes 54826     56 

TH 224 Kreuzung 46,7543 7,6295 yes 54901     39 

TH 226 Einfache Weiche 46,7540 7,6298 yes 55081     36 
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Currently, the position of the frog in the high-speed points from frames 11388 and 11470 is difficult to 

detect. Indeed, the intersection of nearly parallel lines is difficult to be detected. As it can be observed 

in Figure 3-26 (right), the algorithm detects a frog that does not correspond to a frog in the track (Figure 

3-26 (left)).  

  

Figure 3-26 (left): The image of a high-speed point is collected, (right): A bird-eye view of the high-speed point, where 

both main (red) and side (green) tracks are detected. The tracks are almost parallel and the intersection is difficult to 

measure. 

Several factors affect the measurement of the position of the point-frog and are listed in the following: 

• Type of points: As shown, the uncertainty of the point-frog position increases with the point 

crossing angle. Point-frogs of nearly parallel lines are detected with low precision. 

• Track identification algorithm: The detection of the point-frogs depends on the identification of 

the track. The algorithm can be refined and the precision in the identification need to be esti-

mated. 

• Camera calibration: The precision in the measurement of the camera extrinsic parameter affect 

the measurement of the position of point-frog. 

• Absolute scale: The conversion factor from image pixel to distance in the real world has an 

impact in the measurement of the point-frog position. 

The camera extrinsic parameters and the absolute scale can be measured with high precision.  

Currently, only an approximative estimation can be given. As it can be seen in Figure 3-25 (right), the 

precision in the detection of the point-frog is about 1 meter in the (best) case of a simple switch-point.  

A detailed estimation of the precision of the point-frog position need to be performed in the next step. 

3.3.4.2 Detection of the tongue position 

The position of the tongue rail determines the direction of the train. 

Figure 3-27 shows a tongue rail in the image collected. The lines in the crossing can be identified 

(magenta), but at the moment it is not possible to clearly determine the state (open or close) of the 

incoming tongue. 
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Figure 3-27: (left): The image of a crossing point is collected, (right): A bird-eye view of the crossing point with detected 

lines (magenta). The tongue rail can be hardly identified among the detected lines. 

3.3.5 Detection of the curvature of the track 

As described in Section 3.3.2.1, the yaw can be estimated once the vanishing point is found in the 

image. The curvature (inverse of the radius of curvature) is given by the ratio of the yaw rate and the 

tangential velocity (the absolute speed in Figure 6-5 (left)). Figure 3-28 shows the curvature calculated 

from the track position in the image (blue). The signal shape of the measured curvature seems to be in 

accordance with the signal shape of the curvature stored in the database (red). However, a difference 

of the curvature values is observed at every local peak. For a detailed comparison, a more accurate 

identification of the railway track position with the camera system is required. 

 

Figure 3-28 The estimated curvature, derived from the position of the railroad track in the image, is compared to the 

curvature stored in the database for a small section. 
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3.4 Train localisation by Visual Odometry 

In this section, the procedure for calculating the train position from the collected images is described. 

The absolute distance is measured by means of the so-called optical mouse tracking, where brightness 

levels between consecutive frames are compared and the pixel shift is estimated. The absolute scale, 

i.e. the conversion factor between distances in the image plane (measured in pixels) and distances in 

the real world (measured in meters), is calculated by taking the track width as a reference. 

The 3D position of the train is estimated by using the optical flow between consecutive frames. Features 

(points in the image with high brightness gradient) are extracted from the image and tracked from one 

frame to the next one. This technique provides the rotation matrix and translation vector (pose) of the 

train motion with respect to the railway track. The translation vector is normalized since the absolute 

distance cannot be determined at this stage.  

By combining the results of the measured pose with the measured absolute distance, the 3D position of 

the train can be calculated. 

The calculated train position can be improved by freezing the reference frame (key-frame) for a number 

of following frames. This procedure improves the accuracy of the estimation of the direction of motion, 

in particular when the train speed is low.   

3.4.1 Objectives 

The goal of this section is the calculation of the relative train position with Visual Odometry. The relative 

train position refers to the position of the train with respect to the railway track. High precision is expected 

to be achieved with the sample rate (60 Hz) and image resolution (1280x1024 pixels) of the camera in 

use. The calculated distance is expected to have high resolution on a short scale (~1 km). It shall be 

noted that, since a relative, instead of global, position is calculated, the systematic uncertainties accu-

mulate over time causing a drift of the calculated position, that becomes relevant at high distances. The 

drift can be compensated by referring to fixed objects like point-frogs, axle counters or AprilTags with a 

fixed and exactly known position (see section 6.3.2) 

3.4.2 Determination of the absolute distance with the optical mouse tracking 

The use of a monocular camera for visual odometry has the limitation that distances cannot be meas-

ured using image information only. In order to measure distances from images, the absolute scale, i.e. 

conversion factor between the image pixels and meters in a rectified planar image, is determined with 

the so-called mouse tracking technique, in analogy with the optical computer mouse, that detects move-

ment relative to a surface by detecting the emitted light. 

3.4.2.1 Template matching for optical mouse tracking 

The absolute distance in pixels is determined using the template matching technique implemented in 

OpenCV [18]. 

The following areas in the image are defined for the template matching:  

- Search area (Figure 3-29a) in blue: this is the window, where the template matching is per-

formed 

- Template area (Figure 3-29b): this is the template region used to find matches within the search 

area. 

- Search area rectified (Figure 3-29c). 
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The search and template areas are rectified using the parameters estimated in Section 3.3.2 and an 

homography transformation has been applied to get a bird-eye view (Figure 3-29b and Figure 3-29c).  

 

Figure 3-29 a) A search window (blue) is selected in the collected image, b) a template image (from the previous frame), 

c) the search window is rectified and transformed according to a bird-eye view. The image template b) slides through 

the search window and the best match is found (green) The pixel displacement (white arrow) between the top of the 

search image and the position of the green template is proportional to the travelled distance. 

In Figure 3-29c, the template image of the previous frame (red) slides through the actual search window 
(blue) and the position of the best match (green) based on the intensity values is found by minimizing 
the normalized sum of square difference. The difference in pixels between the red and green images is 
proportional to the traveled distance. 

3.4.2.2 Track width as reference for absolute scale determination 

The absolute scale, i.e. the conversion factor between image pixels and distance in the real world, is 
obtained by taking the track width as a reference.  

Figure 3-30 (left) shows the width of various railway tracks in the world. The width of 1435 mm is the 
one, that is by far the most in use and it is called standard gauge. All the railway tracks handled by SBB 
are built according to the standard gauge. The profile of the rail from SBB is shown in Figure 3-30 (right). 

 

Figure 3-30 (left): The size of the railroad track width are listed. The standard gauge (1435 mm) is widely used in world. 

(right): the profile of the track.  

The deviation of the railway track width and its uncertainty in knowledge has a direct impact on the 
calculated driven distance. Although the size of the standard gauge is fixed, some deviations to that 
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value are allowed. According to the railway regulation in Switzerland, the lower limit to the track width is 
1430 mm while the upper limit is 1470 mm, including the gauge widening.  

The track width is measured by SBB twice a year. Figure 3-31 shows the distribution of the width of the 
railway track from Ostermundigen to Thun for the drive OT_1H. A double gaussian fit has been applied 
to get the mean value (1436 mm) and the standard deviation (2 mm) of the track width. 

 

Figure 3-31: The distribution of the measured track width for run OT_1H is shown. A double gaussian fit has been 

performed to extract the mean value and the standard deviation.  

The profile of the track plays also an important role, since the upper part (“Fahrfläche” in Figure 3-30 
right) reflects the light more than the internal part. The internal part of the rail is taken as reference for 
the track width in real world. The upper and more reflecting part is generally more visible in the collected 
image and it is likely taken as candidate for the line detection alrgorithm.  

Figure 3-32 shows the internal (red) and external (green) detected track in the image. 
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Figure 3-32 The internal (red) and external (green) track profile are identified in the collected image. 

The external size of the track can also be used as reference. The “Einbeziehung” is measured with high 
precision 65.0 ± 0.1 mm, so the relative uncertainty of the track width can be reduced. 

The track width is projected to the ground according to the scheme in Figure 3-33. The projected value 
of the track width is used for the conversion from image pixels to distances in the real world.    

 

Figure 3-33 The railway track internal width is propagated to the ground, according to the angle of view of a bird-eye 

image. 

  



  smartrail 4.0 LCS Localisation 

 

 

  Seite Page 42 of 168 

3.4.3 Relative localisation with feature tracking 

The train position is estimated by means of the optical flow among consecutive images. The optical flow 
is defined as the pattern of apparent motion of image objects between two consecutive frames caused 
by the movement of objects or camera.  

The sparse optical flow assumes that the pixel intensity of a detected features (strong corner) does not 
change between consecutive frames. This can lead to uncertainty since the brightness of the 
environment cannot be controlled and it varies quickly as the train moves (e.g. regions with poor 
illumination like train stations or tunnels cause a steep increase of the pixel gradient).  

The strategy proposed is based on the following steps: 

• Feature detection: corners with a brightness gradient are retrieved from the images  

• Feature tracking: the optical flow is applied to the detected features 

• Calculate pose: the rotation and translation of the camera with respect to the track is 
calculated for every frame 

3.4.3.1 Feature detection 

The OpenCV function goodFeaturesToTrack [19] is used in order to determine the strong corner in 

the image. The detected features are then propagated to the next image. 

3.4.3.2 Feature tracking 

The OpenCV function calcOpticalFlowPyrLK [20] is used to calculate the optical flow for the de-

tected features using the iterative Lucas-Kanade method with pyramids [21] in two consecutive images. 

The output of the function is a list of feature points of the consecutive frames. The points are the coor-

dinates (in pixels) of the features in the two consecutive images. The apparent motion of the features in 

the images gives a hint of the train motion (Figure 3-34). 

In a next step, the results of the optical flow are filtered based on the quality of the tracking.  

An additional cut based on the calculated vanishing point of the frame is applied. The calculated tracks 

from the optical flow shall point to the vanishing point. Tracks outside a defined vanishing point window 

are filtered out.   



smartrail 4.0 LCS Localisation 

Page 43 of 168 

 

Figure 3-34: The features of the image are tracked between consecutive frames. Green circles are the features of the 

previous frame propagated to the next frame (red circles). The apparent motion of the features is displayed as a red line.  

3.4.3.3 Recover pose 

Given at least 7 feature points between two images, the rotation and translation of those with respect to 

the camera can be determined. The OpenCV functions findEssentialMat [22] and recoverPose 

[23] are used. 

3.4.4 Reduction of drift  

The calculation of the driven distance can be improved by freezing the reference frame (key-frame) for 

a number of following frames, if the estimated velocity is low.  

Figure 3-35 shows the 2D position of the train in the drive OT_1H. In red, the position measured from 

GNSS is shown. This is considered as the reference. In green, the position of the train is calculated 

based on consecutive frames. In yellow, the position of the train is calculated by means of keyframes. 

The minimum distance among keyframes is set to 0.5 m. As expected, the keyframe processing im-

proves the accuracy of the estimation of the direction of motion, when the velocity of the train is low. 

This can be observed in Figure 3-36, where the trajectory without using the key frames (green) drifts 

away from the reference already after the first curve. The fact that the green curve seems to compensate 

for the accumulated drift, when the train turns right, is accidental and not associated to any systematic 

effect in left or right curves. 
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Figure 3-35: The train position is calculated over the entire path from Ostermundigen to Thun. The position from GNSS 

(red) is considered as the reference and compared to the train position calculated in consecutve frames (green). In 

yellow, the position of the train is calculated by means of keyframes.  

 

Figure 3-36: The train position is shown after few kilometes of the drive from Ostermundigen to Thun. The position from 

GNSS (red)  is considered as the reference and compared to the train position calculated in consecutve frames (green). 

In yellow, the position of the train is calculated by means of keyframes.  

3.4.5 Estimation of the Confidence of the result 

As described in Section 3.4.2.1, the driven distance is estimated through the template match by mini-

mizing the normalized sum of square differences between the brightness levels of the template and the 

search images among consecutive frames.  

The normalized sum of the square differences has been used as the measure of the quality of the 

calculated absolute scale. High (low) values of the square difference are likely to be associated to events 

with wrong (correct) template match. 

Figure 3-37 shows the pixel shift of the template image in the drive OT_1H. The pixel shift calculated in 

frames 8166 and 52803 are not reliable, since the corresponding minimum of the normalized sum of 

square differences is too high. Such events are filtered out and the average of the preceding five frames 

is taken instead.  

The associated uncertainty to the calculation of the traveled distance is estimated in section 3.6.1. 
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Figure 3-37 The pixel shift of the template in consecutive frames is shown (blue). The quality of the template matching 

is evaluated by the value of the minimum of the normalized sum of square differences (red). The template matching in 

frames 8166 and 52803 failed since the minimum of the normalized sum of square difference was too high. 

3.4.6 Integration of a simple train model 

A Kalman-Filter with a simple train model similar to the one used for FOS described in section 4.5.2 can 

be used to make the calculated position more robust. Furthermore, the Kalman filter can easily be ex-

tended to perform a sensor fusion to prevent the drift of VideoOdometry. Here possible extensions would 

be to add the detection of AprilTags, points and catenary masts as position updates. The state vector is 

chosen to be 

𝒙𝒌 =

[
 
 
 
 
 
𝑥𝑘

𝑦𝑘

𝑣𝑥,𝑘

𝑣𝑦,𝑘

𝑎𝑥,𝑘

𝑎𝑦,𝑘]
 
 
 
 
 

 

xk is the x-coordinate of the train position and yk the y-coordinate of the train position. vx,k and vy,k is the 

speed in respective direction and ax,k and ay,k the acceleration in respective direction. 

The state vector is initialized when the algorithm starts tracking the train and some measurements are 

already available to estimate all the state values. 

A train has limited acceleration and deceleration. Thus, we use a constant acceleration model for the 

state prediction: 

xk = Fkxk−1 + wk 

with  
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𝐹𝑘 =

[
 
 
 
 
 
1 0 𝑇 0 𝑇2/2 0

0 1 0 𝑇 0 𝑇2/2
0 0 1 0 𝑇 0
0 0 0 1 0 𝑇
0 0 0 0 1 0
0 0 0 0 0 1 ]

 
 
 
 
 

 

the state transition matrix, wk the process noise and T the sampling time. 

Train localisation with video measures the x and y position of the train, so the measurements can be 

written as 

𝑧𝑘 = 𝐻𝑘𝑥𝑘 + ν𝑘 

with  

𝐻𝑘 = [
1 0 0 0 0 0
0 1 0 0 0 0

] 

the measurement matrix and k the measurement noise. 

When you would like to add other measurements to the Kalman-Filter algorithm to improve the results 

and make it more robust the measurement vector zk changes. For example, when you add the position 

updates by AprilTags the measurement vector changes to 

𝑧𝑘 = [

𝑥𝑣𝑖𝑑

𝑦𝑣𝑖𝑑

𝑥𝑡𝑎𝑔

𝑦𝑡𝑎𝑔

]. 

This also changes the measurement matrix Hk. However, it must be noted that the two sensors have 

different sample times. Video has a sample frequency of 60Hz, whereas the Tags have no defined 

sample time. The procedure now is that the Kalman filter works with a frequency of 60Hz whereby the 

current measurement of the position with video is included in the algorithm with following measurement 

matrix:  

𝐻𝑘 = [

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

] 

When now a position from the AprilTag is available the measurement matrix changes to 

𝐻𝑘 = [

1 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

] 

for the next position update with the Kalman Filter. 

The procedure to add more sensors is always the same, you only have to consider the sampling time. 

 

Both, the process noise wk and the measurement noise ν𝑘 are assumed to be zero mean white noise 

with process covariance Qk and measurement covariance Rk. 

They are defined as the expected values of the process noise and measurement noise vectors: 
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𝑄𝑘 = 𝐸{𝑤𝑘𝑤𝑘
𝑇} =

[
 
 
 
 
 
 
𝜎𝑥 0 0 0 0 0
0 𝜎𝑦 0 0 0 0

0 0 𝜎𝑣𝑥 0 0 0
0 0 0 𝜎𝑣𝑦 0 0

0 0 0 0 𝜎𝑎𝑥 0
0 0 0 0 0 𝜎𝑎𝑦]

 
 
 
 
 
 

 

 

𝑅𝑘 = 𝐸{𝑛𝑘𝑛𝑘
𝑇} = [

𝜎𝑥,𝑣𝑖𝑑 0

0 𝜎𝑦,𝑣𝑖𝑑
] 

When changing the measurement vector also the covariance matrix for the measurement noise 

changes. It changes to 

𝑅𝑘 = 𝐸{𝑛𝑘𝑛𝑘
𝑇} =

[
 
 
 
𝜎𝑥,𝑣𝑖𝑑 0 0 0

0 𝜎𝑦,𝑣𝑖𝑑 0 0

0 0 𝜎𝑥,𝑡𝑎𝑔 0

0 0 0 𝜎𝑦,𝑡𝑎𝑔]
 
 
 

 

when adding AprilTags as measurements. The covariance matrix can be used to specify the accuracy 

of the measurements. Since AprilTags provide an absolute position on the track, the values for σx,tag and 

σy,tag would be much lower than values σx,vid and σy,vid . 

This would cause the Kalman filter algorithm to focus more on the position of the AprilTags, if available, 

than on the position of video. This would correct a possible drift of the position by video. 

3.4.7 Optimisation of the parameters 

In the following, the impacts of the parameters, which are known to affect the calculation of the train 
position, has been evaluated. 
The parameters are listed in the following: 
 

• Camera calibration (intrinsic parameters) 
Deviation from the calibrated values of the focal length affects the conversion from image to 3D 
points in the real world. In addition, deviation from the calculated distortion coefficients leads to 
a lower precision in the railway track detection that is the basis of the camera pose estimation. 

• Camera calibration (extrinsic parameters) 
Wrong estimation of the camera extrinsic parameters leads to wrong results in the template 
match and in the conversion from image to 3D points. 

• Standard gauge as reference 
The track width is taken as a reference to calculate the conversion factor from image pixels to 
distances in the world. The track width is measured by the fit of the distribution. The precision 
in the knowledge of the vertical distance between the camera mounted on the train and the 
ground affect the precision of the measured traveled distance.  

• Camera height 
The height of the camera was not measured when the camera was mounted on the windscreen 
and affect the calculation of the absolute scale. 

• Track profile 
The track width in the collected image is based on the track detection algorithm, that rely on 
edge detection. This means, that strong reflecting surfaces emerging from a darker background 
(or vice versa) are likely candidates for tracks.  
The profile of the track is not regular and introduces an uncertainty in the track position in the 
image.  

 
In Section 3.6.1, the uncertainties deriving from the above-mentioned parameters on the driven distance 
have been calculated. 
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3.5 Object recognition 

This section describes the automatic detection of stopping plates and AprilTags by using the tag camera 

system. 

Stopping plates, located at the side of the track, inform the driver about the position the train has to stop. 

The driver can have an additional benefit from an automatic detection of the stopping plates with the 

camera system. 

AprilTags, mounted on some catenary masts along the side of the track, are object with an exactly 

known geolocalisation that can be detected by the camera system. First of all, the robustness, accuracy 

and recognition rate in detecting the AprilTags shall be increased. Then AprilTags can be used as ref-

erence to reduce the accumulated drift resulting from the calculation of the train position with Visual 

Odometry. 

3.5.1 Recognition of Stopping Plate (Halteorttafeln) for ATO 

The collected video data were analysed in order to detect the “Halteorttafeln“ (“Stopping plate” in the 

following). The template to be detected is pentagonal with a text in the middle (“H”, “1”, “2” or “3”).  

The method described in the following was applied to video data collected with tag and front camera. 

As expected, better results are obtained using data from the tag camera (Figure 3-38), since a higher 

focal length is required to clearly identify the template. Furthermore, the tag camera points to the left 

side of the track, where the stopping plate is supposed to be found (the front camera points to the railway 

track). 

First of all, the collected images are processed for noise reduction and smoothing and adaptive thresh-

old are applied. 

Only contours belonging to 5 corners arranged in a given configuration are selected to avoid false-

positive candidates. Figure 3-38 shows an identified stopping plate.  

This approach can be further improved by analyzing the content of the plate in order to increase the 

detection efficiency. At the moment, the template is indeed identified using the shape information of the 

plate only. The analysis can be also extended with the measurement of the position of the plate, that 

can be possible, once its size is known. 
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Figure 3-38: The stopping plate identified using the tag camera. 

3.5.2 Recognition of AprilTags 

In section 3.4, the procedure for a relative train localisation is described. The measured position is ex-

pected to drift during the travel. Absolute references like AprilTags are needed to reset the accumulated 

drift. 

For the measurement runs, collected on 14th June 2019, 20 ApriTags, of size of 15.5x15.5 cm2, were 

mounted 3 meters height on the catenary masts situated on both sides of the tracks. Ten AprilTags were 

placed on left side of the track and therefore they were visible to the camera system placed in the 

locomotive only. Ten AprilTags were placed on right side of the track and therefore they were visible to 

the camera system placed in the control wagon only. 

Figure 3-39 (left) shows the scheme of the camera system moving forward and passing by an AprilTag, 

that is placed 4 meters on the left side of the track. Figure 3-39 (right) shows one of the collected images. 

The size of the AprilTag in the image is about 100x100 pixels and the AprilTag is detected. 
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Figure 3-39 Left: scheme of the camera system moving forward and passing by an AprilTag. Right: image where the 

AprilTag is detected (green square). 

Figure 3-40 (left) shows the scheme of the camera system moving backwards and passing by an 

AprilTag, that is placed about 8 meters on the left side of the track. Figure 3-40 (right) shows one of the 

collected images. where the AprilTag was detected. The size of the AprilTag in the image is about 60x60 

pixels and the AprilTag is detected. 

       

Figure 3-40 Left: scheme of the camera system moving backwards and passing by an AprilTag. Right: image where the 

AprilTag is detected (green square). 
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3.6 Results 

3.6.1 Measurement of the absolute distance 

The different systematic uncertainties are described in Section 3.4.7. 

The following parameters (with systematic uncertainties) are estimated for the calculation of the traveled 

distance:  

• Standard gauge from fit of the track width distribution: 1436 ± 2 mm 

• Height of the camera mounted on the windscreen: 2850 ± 100 mm 

• Detected track distance in pixels: 325 ± 2 pixels 

• Camera pose: pitch 8.0 ± 0.1°, yaw 2.5, tilt 2.9 

• Focal length: 8.0 ± 0.2 mm 

Each parameter is varied within the estimated uncertainty. The difference of the calculated traveled 

distance with the central value (calculated without including the systematic uncertainty) is shown in 

Table 3-5. As it can be observed, the dominant contribution is given by the uncertainty deriving from the 

track detection in the image. 

Table 3-5: The traveled distance is calculated by varying each systematic contribution and the difference with respect to 

the central values is shown. 

 
Measurement runs 

OT_1H OT_1R OT_2H OT_2R OT_3H OT_3R OT_4H OT_4R 

Uncertainty from fit of 
track width and from cam-

era height (m) 
77 76 74 74 76 76 77 76 

Uncertainty from track de-
tection in the image (m) 

133 132 128 128 132 132 133 132 

Uncertainty from camera 
pose estimation (m) 

127 91 126 84 130 91 131 89 

Uncertainty from focal 
length of the camera (m) 

32 32 32 32 32 32 32 32 

Central Value (m) 26405 26261 25479 25430 26204 26291 26373 26195 
 

Table 3-6: The total systematic uncertainty of the calculated traveled distance is shown for each measurement run. 

 
Measurement runs 

OT_1H OT_1R OT_2H OT_2R OT_3H OT_3R OT_4H OT_4R 

Central Value (m) 26405 26261 25479 25430 26204 26291 26373 26195 
Total Systematic  
Uncertainty (m) 

202 180 197 173 203 181 204 180 

Total Systematic  
Uncertainty (%) 

0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 

 

The total systematic uncertainty of the measured travelled distance ranges from 0.7 to 0.8%, as it can 

be seen in Table 3-6. 

The comparison of the results with the GNSS (combined with IMU) and GTG references is described in 

section 6.3.1. 
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3.6.2 Measurement of the local position 

In order to track the train motion in the ground reference system, the following information should be 
available: 

• Position of the starting points (Ostermundigen and Thun train stations in this case): 
o This information is taken from GNSS: 

• Initial yaw of the train: 
o This information is taken from track topography (GTG) 

• Camera extrinsic parameters: 
o Measured as explained in Section 3.3.2 

• Absolute scale: 
o Measured as explained in Section 3.4.2 

 

The results of the calculated train position are shown in Section 6.3.3 and compared to the GNSS/IMU 

combination. 

3.6.3 Detection of the AprilTags 

The results of the detection of the AprilTags during the travel from Ostermundigen to Thun are summa-

rized in the following tables. 

The tables contain the following data:  

• Column ID: Identification number of the detected AprilTags 

• Column Lat:  Nominal latitude of the AprilTags 

• Column Lon: Nominal longitude of the AprilTags 

• Column Passing Time: Time, when the train passes the AprilTag. This is calculated from the 

tag position, which is calculated in every frame where the tag is detected, and it is back-propa-

gated to an ideal 0-distance (distance where the train passes the tag) using the travelled dis-

tance calculated with the template match in images, that have been collected from the front 

camera. The uncertainties (in parenthesis) are both statistical and systematics and refer to the 

last digits. The statistical error is derived from the different position of the detected tags in con-

secutive frames. The standard deviation of the arrival times is the statistical error. The system-

atic uncertainty takes into account the image processing required to identify the tag, the method 

used to recover the tag pose and the tag size. The uncertainty due to the propagation using the 

template match has been found to be negligible. 

• Column Uncertainty: The statistical uncertainty of the arrival time is combined to the systematic 

uncertainty and converted to spatial resolution. 

• Column Nr frames: The number of frames where the AprilTag is detected. 
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Table 3-7: The results of the tag detection during the drive from Ostermundigen to Thun (OT_1H) are listed. The tag with 

ID 4 was detected in few frames with a dedicated image processing. The statistical and systematic error are therefore 

not accurate. 

Id Lat Lon Passing time (Stat)(Sys) Uncertainty (m) Nr frames 

28 46,8695 7,5606 06:53:58.973 (002)(024) 0.845 10 

13 46,8678 7,5610 06:54:04.008 (001)(038) 1.426 4 

4 46,8668 7,5613 06:54:07.080 (000)(001) 0.012 4 

20 46,8648 7,5619 06:54:13.248 (002)(017) 0.639 9 

18 46,8639 7,5622 06:54:15.931 (009)(021) 0.864 9 

29 46,8382 7,5698 06:55:36.145 (002)(020) 0.763 9 

17 46,8372 7,5701 06:55:39.151 (008)(029) 1.130 10 

23 46,8362 7,5704 06:55:41.974 (015)(024) 1.093 9 

8 46,8352 7,5707 06:55:44.950 (015)(025) 1.155 9 

3 46,8337 7,5711 06:55:49.425 (002)(021) 0.882 10 

 

Table 3-8: the results of the tag detection during the drive from Thun to Ostermundigen (OT_1R) are listed. The tag with 

ID 4 was not be detected while the tag with ID 28 was not visible due to another train passing by on the other track. 

Id Lat Lon Passing time (Stat)(Sys) Uncertainty (m) Nr frames 

3 46,8337 7,5711 07:16:40.011 (007)(043) 1.653 19 

8 46,8352 7,5707 07:16:44.574 (002)(043) 1.642 18 

23 46,8362 7,5704 07:16:47.597 (007)(044) 1.689 19 

17 46,8372 7,5701 07:16:50.474 (005)(046) 1.797 20 

29 46,8382 7,5698 07:16:53.495 (006)(047) 1.818 19 

18 46,8639 7,5622 07:18:08.628 (008)(044) 1.692 18 

20 46,8648 7,5619 07:18:11.256 (003)(046) 1.725 19 

4 46,8668 7,5613 Not detected   

13 46,8678 7,5610 07:18:20.476 (011)(048) 1.841 7 

28 46,8695 7,5606 Occluded by other train   

 

Table 3-9: The results of the tag detection during the drive from Ostermundigen to Thun (OT_2H) are listed. 

Id Lat Lon Passing time (Stat)(Sys) Uncertainty (m) Nr frames 

28 46,8695 7,5606 08:10:25.953 (013)(111) 0.828 46 

13 46,8678 7,5610 08:10:48.735 (006)(098) 0.855 41 

4 46,8668 7,5613 08:11:01.408 (012)(092) 0.881 37 

20 46,8648 7,5619 08:11:25.170 (003)(086) 0.839 35 

18 46,8639 7,5622 08:11:35.052 (005)(081) 0.836 34 

29 46,8382 7,5698 08:13:26.125 (015)(024) 1.010 10 

17 46,8372 7,5701 08:13:29.314 (014)(026) 1.069 10 

23 46,8362 7,5704 08:13:32.309 (009)(022) 0.872 10 

8 46,8352 7,5707 08:13:35.450 (002)(024) 0.899 10 

3 46,8337 7,5711 08:13:40.155 (002)(018) 0.669 10 
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Table 3-10: The results of the tag detection during the drive from Thun to Ostermundigen (OT_2R) are listed. 

Id Lat Lon Passing time (Stat)(Sys) Uncertainty (m) Nr frames 

3 46,8337 7,5711 08:33:41.947 (015)(044) 1.753 19 

8 46,8352 7,5707 08:33:46.551 (013)(043) 1.694 19 

23 46,8362 7,5704 08:33:49.588 (012)(045) 1.788 19 

17 46,8372 7,5701 08:33:52.448 (018)(048) 1.963 20 

29 46,8382 7,5698 08:33:55.479 (014)(047) 1.880 20 

18 46,8639 7,5622 08:35:37.249 (020)(112) 1.660 49 

20 46,8648 7,5619 08:35:44.324 (018)(127) 1.666 56 

4 46,8668 7,5613 08:36:03.249 (030)(150) 1.797 60 

13 46,8678 7,5610 08:36:13.010 (022)(141) 1.717 59 

28 46,8695 7,5606 08:36:28.665 (030)(156) 1.787 57 

 

Table 3-11: The results of the tag detection during the drive from Ostermundigen to Thun (OT_3H) are listed. 

Id Lat Lon Passing time (Stat)(Sys) Uncertainty (m) Nr frames 

28 46,8695 7,5606 09:26:08.653 (009)(069) 0.838 28 

13 46,8678 7,5610 09:26:22.726 (014)(061) 0.877 25 

4 46,8668 7,5613 09:26:30.567 (013)(060) 0.943 23 

20 46,8648 7,5619 09:26:44.758 (011)(050) 0.868 21 

18 46,8639 7,5622 09:26:50.462 (016)(049) 0.921 19 

29 46,8382 7,5698 09:28:27.132 (009)(023) 0.926 9 

17 46,8372 7,5701 09:28:30.172 (014)(026) 1.186 9 

23 46,8362 7,5704 09:28:33.046 (012)(022) 0.958 9 

8 46,8352 7,5707 09:28:36.056 (002)(025) 0.641 9 

3 46,8337 7,5711 09:28:40.578 (009)(022) 0.922 9 

 

Table 3-12: The results of the tag detection during the drive from Thun to Ostermundigen (OT_3R) are listed. The tag 

with ID 13 was not visible due to another train passing by on the other track. 

Id Lat Lon Passing time (Stat)(Sys) Uncertainty (m) Nr frames 

3 46,8337 7,5711 10:00:54.920 (016)(047) 1.791 20 

8 46,8352 7,5707 10:00:59.717 (011)(046) 1.720 20 

23 46,8362 7,5704 10:01:02.983 (017)(049) 1.856 20 

17 46,8372 7,5701 10:01:06.067 (008)(052) 1.919 22 

29 46,8382 7,5698 10:01:09.328 (010)(051) 1.862 20 

18 46,8639 7,5622 10:02:47.821 (016)(100) 1.699 43 

20 46,8648 7,5619 10:02:53.963 (021)(107) 1.717 45 

4 46,8668 7,5613 10:03:08.975 (030)(121) 1.736 41 

13 46,8678 7,5610 Occluded by other train   

28 46,8695 7,5606 10:03:36.567 (031)(193) 1.850 81 
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Table 3-13: The results of the tag detection during the drive from Ostermundigen to Thun (OT_4H) are listed. 

Id Lat Lon Passing time (Stat)(Sys) Uncertainty (m) Nr frames 

28 46,8695 7,5606 11:38:17.013 (014)(039) 0.937 15 

13 46,8678 7,5610 11:38:25.201 (015)(048) 1.150 10 

4 46,8668 7,5613 11:38:30.336 (000)(039) 0.888 2 

20 46,8648 7,5619 11:38:40.870 (003)(038) 0.823 16 

18 46,8639 7,5622 11:38:45.487 (002)(043) 0.926 16 

29 46,8382 7,5698 11:41:00.482 (007)(038) 0.791 17 

17 46,8372 7,5701 11:41:06.622 (006)(046) 0.837 18 

23 46,8362 7,5704 11:41:13.094 (009)(052) 0.847 21 

8 46,8352 7,5707 11:41:21.234 (004)(062) 0.826 26 

3 46,8337 7,5711 11:41:36.333 (014)(078) 0.863 30 

 

Table 3-14: The results of the tag detection during the drive from Thun to Ostermundigen (OT_4R) are listed. The tag 

with ID 3 was not visible due to another train passing by on the other track. 

Id Lat Lon Passing time (Stat)(Sys) Uncertainty (m) Nr frames 

3 46,8337 7,5711 Occluded by other train   

8 46,8352 7,5707 12:18:52.568 (011)(073) 1.672 31 

23 46,8362 7,5704 12:18:57.679 (006)(077) 1.735 34 

17 46,8372 7,5701 12:19:02.547 (011)(082) 1.863 34 

29 46,8382 7,5698 12:19:07.688 (004)(080) 1.808 33 

18 46,8639 7,5622 12:21:16.877 (018)(075) 1.721 32 

20 46,8648 7,5619 12:21:21.394 (011)(076) 1.683 32 

4 46,8668 7,5613 12:21:31.747 (022)(077) 1.781 28 

13 46,8678 7,5610 12:21:36.984 (014)(075) 1.683 32 

28 46,8695 7,5606 12:21:45.371 (020)(083) 1.864 34 

 

As it can be seen in Table 3-7 to Table 3-14, the uncertainty in the measured position is higher when 

the train moves backwards, in runs OT_1R, OT_2R, OT_3R and OT_4R. This is due to the fact that the 

AprilTags are placed on the left side of the track. Indeed, the AprilTags are closer to the camera when 

the train moves forward. 

The detection efficiency can be defined as the number of AprilTags detected, divided by the total number 

of AprilTags that were visible from the camera. In this way, AprilTags occluded by a train passing in the 

other tracks do not count.  

Table 3-15 shows the efficiency of the detection of AprilTags for each run. The overall detection effi-

ciency is 100% when the train move forward and 97% when the train move backward. 
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Table 3-15: The efficiency of the detection of AprilTags. 

Run Train Direction 
ApriTags 

Detection efficiency 
visible  occluded detected 

OT_1H forward 10 0 10 100% 

OT_1R backward 9 1 8 89% 

OT_2H forward 10 0 10 100% 

OT_2R backward 10 0 10 100% 

OT_3H forward 10 0 10 100% 

OT_3R backward 9 1 9 100% 

OT_4H forward 10 0 10 100% 

OT_4R backward 9 1 9 100% 

 

3.6.4 Measurement of the extrinsic parameters with a train at rest 

On 3rd December 2019 video data were collected on a RE420. The measurement required a train at rest 
for the estimation of the camera pose.  
The camera box has been mounted in different positions at the windscreen, pointing the railway track. 
For each camera pose, video data containing 100 frames were stored for post-processing analysis: 

• video_front_ctrl_191203_1428_frame_0.raw 

• video_front_ctrl_191203_1431_frame_0.raw 

• video_front_ctrl_191203_1432_frame_0.raw (not included since the camera yaw angle 
changes) 

• video_front_ctrl_191203_1433_frame_0.raw 

• video_front_ctrl_191203_1434_frame_0.raw 

• video_front_ctrl_191203_1442_frame_0.raw 

• video_front_ctrl_191203_1449_frame_0.raw 

• video_front_ctrl_191203_1452_frame_0.raw 

• video_front_ctrl_191203_1456_frame_0.raw 

• video_front_ctrl_191203_1458_frame_0.raw 

• video_front_ctrl_191203_1500_frame_0.raw 

• video_front_ctrl_191203_1503_frame_0.raw 
The procedure for the automatic estimation of the camera pose is described in Section 3.3.2. In the 
following, a summary of the results and detailed plots are shown for each dataset. 
 

3.6.4.1 Summary 

The railway track detection efficiency is measured and compared for each dataset in Figure 3-41.  
The lower detection efficiency in dataset 1456 is due to the fact that the camera was not well posed. 
The camera pitch is too small meaning that the camera points to a region outside the camera focus. 
This results in a poor quality of the image acquired. This can be seen in the detailed description of the 
result for that dataset.  
Lower detection efficiency has been observed in dataset 1442 and is under investigation. It could be 
due to the dirty condition of the windscreen, as can be seen in the detailed description of the result of 
that dataset. 
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Figure 3-41 Summary of the percentage of the frames where the track was detected. 

  
Figure 3-42 shows the pitch and yaw calculated in each dataset. The red band is the standard devia-
tion of the angle distribution. 

 
Figure 3-42 (left) Summary of the estimated pitch, (right) Summary of the estimated yaw. 

It can be seen that the precision in the estimation of the yaw is higher with respect to the one of the 
pitch. 
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3.6.4.2 Datasets 

In the following, the distributions of the pitch and yaw of each datasets are shown. The lower resolution 

measured in some of the datasets is related to the poor measurement of the position of the railway track 

in the image. 

3.6.4.2.1 Dataset 1428 

 

Figure 3-43 Left: Image collected from the camera with identified railway track (green). Middle: Image processed with 

detected lines (red) and identified railway track (green). Right: Estimated pitch (top) and yaw (bottom) distributions. 

3.6.4.2.2 Dataset 1431 

 

Figure 3-44 Left: Image collected from the camera with identified railway track (green). Middle: Image processed with 

detected lines (red) and identified railway track (green). Right: Estimated pitch (top) and yaw (bottom) distributions. 

 

3.6.4.2.3 Dataset 1433 

 

Figure 3-45: Left: Image collected from the camera with identified railway track (green). Middle: Image processed with 

detected lines (red) and identified railway track (green). Right: Estimated pitch (top) and yaw (bottom) distributions. 
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3.6.4.2.4 Dataset 1434 

 

Figure 3-46: Left: Image collected from the camera with identified railway track (green). Middle: Image processed with 

detected lines (red) and identified railway track (green). Right: Estimated pitch (top) and yaw (bottom) distributions. 

3.6.4.2.5 Dataset 1442 

 

Figure 3-47: Left: Image collected from the camera with identified railway track (green). Middle: Image processed with 

detected lines (red) and identified railway track (green). Right: Estimated pitch (top) and yaw (bottom) distributions. 
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3.6.4.2.6 Dataset 1449 

 

Figure 3-48: Left: Image collected from the camera with identified railway track (green). Middle: Image processed with 

detected lines (red) and identified railway track (green). Right: Estimated pitch (top) and yaw (bottom) distributions. 

3.6.4.2.7 Dataset 1452 

 

Figure 3-49: Left: Image collected from the camera with identified railway track (green). Middle: Image processed with 

detected lines (red) and identified railway track (green). Right: Estimated pitch (top) and yaw (bottom) distributions. 

3.6.4.2.8 Dataset 1456 

 

Figure 3-50: Left: Image collected from the camera with identified railway track (green). Middle: Image processed with 

detected lines (red) and identified railway track (green). Right: Estimated pitch (top) and yaw (bottom) distributions. 
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3.6.4.2.9 Dataset 1458 

 

Figure 3-51: Left: Image collected from the camera with identified railway track (green). Middle: Image processed with 

detected lines (red) and identified railway track (green). Right: Estimated pitch (top) and yaw (bottom) distributions. 

3.6.4.2.10 Dataset 1500 

 

Figure 3-52: Left: Image collected from the camera with identified railway track (green). Middle: Image processed with 

detected lines (red) and identified railway track (green). Right: Estimated pitch (top) and yaw (bottom) distributions. 

3.6.4.2.11 Dataset 1503 

 

Figure 3-53: Left: Image collected from the camera with identified railway track (green). Middle: Image processed with 

detected lines (red) and identified railway track (green). Right: Estimated pitch (top) and yaw (bottom) distributions. 

3.6.5 Measurement at night / darkness 

The camera box is equipped with infrared illuminators in order to enlighten dark scenes like tunnels. The 

camera box is placed within the train behind the windscreen. This limits the power of the illuminator 

since only part of the light emitted can pass though the screen and then illuminate the scene. As men-

tioned in section 3.2.4, in condition with poor illumination, the camera exposure and the camera gain 

are set to the maximum allowed values. 

In Figure 3-54 the collected images are rectified and then transformed to get a bird-eye view. The left 

picture shows the image scaled from 10 to 8 bits linearly. In the center, an image scaled from 10 to 8 
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bits logarithmically is shown. By scaling according to a logarithmic function, the brightness difference of 

dark pixels is enhanced with respect to bright pixels. The right picture shows the result of a threshold-

operation according to the mean brightness in a region of interest containing the track. The track lines, 

pointed from the red arrows in Figure 3-54 (right), can be hardly seen. 

   

Figure 3-54: Left: The collected image is converted from 10 to 8 bits linearly. Middle: The collected image is converted 

from 10 to 8 bits logarithmically. Right: The logarithmically converted image is processed with an adaptive threshold in 

order to detect the railway tracks. The track lines, pointed from the red arrows, are poorly visible in the image and cannot 

be detected. 

In the example, the calculation of the absolute distance and the tracking of features is not possible. A 

possible solution is to increase the illumination of the scene by increasing the power of the illuminator 

or by placing it outside the train, so that part of the light will not be reflected from the screen. 

3.6.6 Measurement with snow  

The performance of the railway track recognition and the determination of the train speed has been 

tested on measurements with snow.  

On snowy days, both camera exposure and gain are increased in order to compensate for the lack of 

illumination. In addition, the snow laying on the track can be very inhomogeneous, meaning that the 

brightness levels of the region of interest in front of the track can vary a lot between consecutive frames. 

This means that the gain and exposure times shall be accurately controlled in order to avoid artificial 

jumps in the brightness of the collected image frames, that are not due to brightness changes in the 

scene. Moreover, using the mean value of the brightness for the automatic control function could be not 

the best choice since a dark scene with snow spots would lead to an acceptable average brightness 

level, although the scene could be not well exposed. 

As described in section 3.4.2, the calculation of the absolute distance shouldn’t be influenced by the 

change of brightness in consecutive frame. Indeed, the template matching is based on the minimization 

of the brightness square difference normalized to the brightness of the images in use. 

Figure 3-55 shows the image collected with snow on the track (left) and the railway track can be identi-

fied (center). As expected, the template matching is not affected by the snow on the track and the speed 

can be measured (right). 
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Figure 3-55 (left): Image collected from St Gallen to Bern (data from drive BSG_1R) with snow on the railway track, 

(center): the image is transformed to a bird-eye view where the railway track (magenta) can be identified, (right): the 

absolute speed is measured with precision meaning that the template matching is not affected by the snow. 

Figure 3-56 shows the image collected with snow on the track (left). As it can be observed, the image 

is blurry since the exposure is set to the maximum value due to the lack of illumination and the train 

speed is high. The railway track is difficult to identify, as can be seen in Figure 3-56 (center). As ex-

pected, the template matching is not affected by the blurry image and the speed can be measured 

(right). 

    

Figure 3-56: (left) Image collected from St Gallen to Bern with little snow on the railway track. Motion blur can be observed 

due to low illumination of the scene and high speed of the train, (center) the image transformed to a bird-eye view where 

the railway track (magenta) is difficult to be identified, (right): the absolute speed is measured with precision meaning 

that the template matching is not affected by the snow and by the motion blur. 

3.6.7 Measurement with heavy rain 

Unfortunately, no heavy rain was present in any of the measurements. 

3.6.8 Measurement on a foggy day 

Unfortunately, no fog was present in any of the measurements. 

3.6.9 Measurement on sunny day with shadows 

As explained in section 3.2.4, the camera exposure is set depending on the average brightness levels 

of a region in front of the train. The scene is well exposed if the brightness levels of the scene are 

homogeneous. In case of a bright scene with shadows, the brightness picks both a low and high value.  

Figure 3-57 (left) shows the shadow on the railway track caused by a train passing alongside. The 

railway track can be detected (green, Figure 3-57 center) and the train speed can be calculated, mean-

ing the travelled distance by means of the template matching is not affected by the shadows in the 

example. 
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Figure 3-57 (left) Image collected from the camera, where a train is passing nearby causing shadow on the track, (center) 

the image transformed to a bird-eye view where the railway track (green) can be identified, (right): the absolute speed is 

measured with precision meaning that the template matching is not affected by the shadows. 

 

Figure 3-58 (left) shows the shadow on the railway track caused by a small tunnel. The railway track 

can be detected (green, Figure 3-58 center) and the train speed can be calculated, meaning the travelled 

distance by means of the template matching is not affected by the shadows in the example. 

 4   

Figure 3-58  (left) Image collected from the camera, where a train is passing a short tunnel, (center) the image transformed 

to a bird-eye view where the railway track (green) can be identified, (right): the absolute speed is measured with precision 

meaning that the template matching is not affected by the shadow of the short tunnel. 

3.6.10  Measurement on bridges 

Figure 3-59 (left) shows the image collected from the train passing the Uttigen bridge. The railway track 

can be detected (green, Figure 3-59 center) and the train speed can be calculated, meaning the travelled 

distance by means of the template matching is not affected by structure of the railway track in the ex-

ample. 

   

Figure 3-59 (left) Image collected from the camera, where a train is passing the Uttigen bridge, (center) the image trans-

formed to a bird-eye view where the railway track (green) can be identified, (right): the absolute speed is measured with 

precision meaning that the template matching is not affected by the ground structure of the bridge. 
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Figure 3-60 (left) shows the image collected from the train passing a bridge close to Brig. The railway 

track can be detected (green, Figure 3-60 center) and the train speed can be calculated, meaning the 

travelled distance by means of the template matching is not affected by structure of the railway track in 

the example. 

  

Figure 3-60 (left) Image collected from the camera, where a train is passing the bridge before the Brig station, (center) 

the image transformed to a bird-eye view where the railway track (green) can be identified, (right): the absolute speed is 

measured with precision meaning that the template matching is not affected by the ground structure of the bridge. 

3.6.11 Measurement with a tilting train 

Unfortunately, no measurement with a tilting functionality was available. The tilting functionality on 

RABDe 500 did not work on the day of the measurement. 
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4 Sensor Technology FOS (Fiber Optic Sensing) 
 

It is customary for communications companies to install their fiber optic cables running alongside train 

tracks for various reasons. Many pairs of cables are usually installed, resulting in spare cables that can 

be used for expansion or other purposes. 

FOS can use a pair of fiber optic cables for runs of currently up to 40 Km in order to sense mechanical 

vibrations (sound) in sections of the fiber optic cable creating a high sensitivity passive distributed sensor 

which can report the vibration profile across the whole cable at a rate of thousands of times per second. 

4.1 Objectives 

The objective of using FOS as a sensor is to be able to track moving trains, their position, front and rear 

ends, velocity, length, etc., in almost real time, with a predefined maximum allowed latency defined by 

the user. 

As the name implies, FOS works by using an already existing fiber optic cable which was already laid 

out alongside the train tracks. 

As long as the train is moving above a certain speed, FOS can pinpoint its location with absolute accu-

racy and is not subject to error accumulation. It also works well in tunnels, where some technologies are 

not available (GNSS) or have great difficulty dealing with the low light conditions (Video). 

4.2 Introduction 

The fiber optic cable used for the FOS measurements was installed adjacent to the train tracks in an 

almost straight line from Münsingen to Thun as depicted in Figure 4-1. For the purposes of acoustic 

sensing, the fiber was logically divided into 1190 segments of 8.167619 meters in length each and the 

measurements were done using the ODH-3 equipment from OptaSense. 

 

Figure 4-1: Fiber optic cable path 
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The fiber optic cable used is an ordinary cable which was already installed for communications purposes 

and no special installation was used for FOS expect for the active components at the endpoints. A 

calibration run was done by SBB and Optasense in order to map each catenary mast along the track to 

its respective fiber channel. From there it was possible to interpolate each channel to its linear position 

along the track, which is essential to determine the physical quantities we are looking for (see Table 4-1 

much further below). 

In broad terms, each section of a fiber optic cable (channel) is represented by a certain point in it whose 

relative displacement in relation to its resting position is measured at predefined intervals (sampling 

rate). This displacement varies greatly from channel to channel and is dependent not only on the source 

signal but also on many factors which attenuate and distort the signal until it reaches this measuring 

point. 

It is expected that the measurement values of each channel are proportional to the acoustic vibration 

(sound) at its representative point and the whole fiber optic cable can be seen as a sequence of inde-

pendent microphones. In this model, however, each microphone has a different attenuation profile and 

reports signals which, in general, bear little resemblance with each other, especially in relation to their 

dynamic ranges, even though we can expect “gradual” variations from channel to channel. 

In order to present the results and algorithms, we have chosen an interval of data where the measuring 

train was present, along with some other trains that usually ride on this track segment. 

The chosen interval is a 15-minute interval from 14-June-2019, starting 0.2 ms after 6:45 am GMT which, 

for all practical purposes, can be regarded at 6:45 am sharp (2019-06-14T06:45:00:000200Z). 

The data is composed of 32-bit (4-byte) integers sampled at 2500 Hz for each of the 1190 channels. 

The total date rate for this segment is, therefore, 4 x 2500 x 1190 = 11.900.000 bytes per second to be 

processed in almost real time. 

4.3 Analysis Architecture 

The FOS analysis can be divided into 2 clear parts: 

1. Intra channel: which looks at each channel independently of all others. Intra channel analysis 

should be responsible for the filtering, thresholding, power and spectra calculation, and any 

other transformations done behaving as each channel is independent of all others. 

2. Inter channel: A higher level which only deals with the events generated from the intra channel 

analysis and which looks across all channels, actually tracking the moving objects. This level 

should also deal with the physics of the tracked object and, ideally, should feedback its results 

or predictions to the intra channel level which could use this information in order to dynamically 

adjust its running parameters, increasing both the accuracy and the precision of the whole sys-

tem. 

The intra channel analysis has the goal of generating discrete events for each unit of time, e.g., “train 

on” and “train off” events when there is a train passing or not, respectively, in front of this channel. These 

events are then used by the inter channel analysis to track the train front and rear ends across channels 

in relation to time. The inter channel analysis can then be used to report train position, speed, and length 

among other values. 
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4.3.1 Signal and Silence 

It is extremely important to be able to detect “silence” periods, i.e., periods of time during which “no” 

vibration or sound is being reported. In other words, it is imperative to be able to detect and classify 

background noise and differentiate it from periods when a signal is and is not present. If silence periods 

can be reliably detected, any deviation from it is a noteworthy event that should be investigated 

Unfortunately, as will be discussed later, the signal which gets reported when there is no vibration does 

not possess the characteristics of neither white nor pink noise and presents some very high-power low 

frequency components. 

Apart from thermal and systemic noises, it must be pointed out that there can be other sources of signals 

which are powerful enough to be detected and may, therefore, influence the measurements. These 

signals are considered “noise” for the purposes of train detection but, as expected, do not possess the 

characteristics of random noise (and never will). These are in fact signals that should and are being 

measured but “interfere” with the signal being searched for, which is a train passing. 

It should also be clear that even though there is a relation between the channel number and its linear 

position alongside the track, the fiber route may not strictly follow the track and so the total fiber length 

can exceed the total track length. Many channels are located inside stations (go in and out) or are in 

fact parts of cable slack (loops) at certain positions along the path. These channels still report some 

signals but should, in general, be discarded as they don’t directly contribute to the calculation of the train 

movement. Measurements were made at every pole in the path in order to map the channel number to 

each pole. 

All algorithms and techniques used here were developed to be used in almost “real time”, i.e., the train 

tracking should be done using a predefined maximum latency after receiving the raw data and should 

be executable by using “regular” contemporary workstations. 

4.4 Intra Channel Analysis 

The intra channel analysis uses the raw data for each channel in an independent manner in order to 

detect the passage of a train. It is, in fact, concerned about distinguishing periods of time when the 

incoming signal is not noise, i.e., it reports the current status of each channel in relation to noise. 

At every time step each channel will be represented by a binary value indicating the detection or not of 

some sort of signal which is different enough from white noise. 

4.4.1 Channel Raw Data 

We have chosen to depict 3 channels which present different characteristics in order to demonstrate 

some of the problems and difficulties that were encountered and also to motivate the search for different 

measures that could be used in a simple and consistent manner and that do not rely on the magnitude 

of the signal. 

Each channel will present varying amplitudes whose values are not know a-priori and neither can be 

trusted to stay within a measured range for all times. This is expected due to differences in the signal 

source (train) and also on the unpredictable and varying conditions of the fiber optic cable and its envi-

ronment, e.g. soaked soil due to rain in contrast with dry soil, temperature variations, etc. will influence 

the attenuation of the signal until it finally reaches the measuring point. 
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Due to the scaling used in the following figures, the edges look sharp but, in fact, trains can be detected 

from quite far away, i.e., for each channel, the low frequencies are “heard” much before a train arrives 

and long after they are gone, albeit with increasing and decreasing average energy, respectively. This 

means that the observed signal envelope tends to gradually increase for the front end and decrease for 

the rear end on average, which means that we cannot use instantaneous values but we must average 

the values over a period of time and, hence, the “almost” real time nature of the whole system. 

Figure 4-2 shows the raw data for channel 190. Just by glancing at this figure, it can be easily seen that 

there are 4 “short” intervals that stand out (where the signal oscillates with a much higher amplitude). 

These are, in fact, representative of trains moving through this channel. Of special interest is the mag-

nitude (absolute value of the amplitude) the signal attains at these intervals, which is between 500.000 

and 1.500.000 approximately (no units are reported). 

 

Figure 4-2: Channel 190 raw data 

In contrast, Figure 4-3 shows the raw data for channel 820. Once again, we can clearly distinguish 4 

“short” intervals where the amplitude is greater than the rest but, this time, not by such high factors as 

channel 190. In fact, the range goes from 10.000 to 30.000 approximately. Just like channel 190, this 

channel also presents a 3-fold increase from the low to high values but their absolute values are orders 

of magnitude smaller than the ones from channel 190. 

Further investigation shows that this channel is in the Kissen train station and most probably the signal 

gets highly attenuated until it reaches the fiber optic cable. Figure 4-4 shows an aerial view of this section 

of the track. 

It should be pointed out that the reported signal amplitude is dependent on the strength of the vibration 

at the measuring point which is a function, among other things, of the power of the source signal. This 

means that different amplitudes are expected depending on the length, weight, and speed of each train. 
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Figure 4-3: Channel 820 raw data 

 

Figure 4-4: Kiesen station and respective channels 

Finally, Figure 4-5 shows the raw data for channel 1050. The data for this channel looks a little different 

from the other 2, even though there are still 4 clear “short” intervals where the amplitude is dispropor-

tionately higher than the rest of the signal which are, in fact, due to the passage of trains. For this 

channel, the range goes from 100.000 to 300.000, approximately, which is an order of magnitude higher 

than channel 820 but half an order of magnitude lower than channel 190. Once again, the amplitude 

levels show a 3-fold increase, approximately. 

This time, however, the “silence” intervals are not as “smooth” as the previous 2 channels and contain 

many “small” peaks which warranted further investigation. 
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Figure 4-5: Channel 1050 raw data 

These are, in fact, the signals produced by cars passing by on a highway that runs parallel to the tracks 

between channels 1030 and 1072 as can be seen on Figure 4-6.  

 

Figure 4-6: Highway close to the train tracks 

Even though these signals have a lower amplitude than the train signals, they are not “noise” under any 

classical definition and do present problems for train detection based on signal energy as they require 

adaptive algorithms with constant monitoring of energy levels in order to reliably filter them out. 
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4.4.2 Signal Energy and Power 

Given a sequence of consecutive samples of length 𝑁 from the original infinite sequence, the energy 𝐸𝑘 

of a compactly supported discrete signal {𝑥𝑛} in an interval of length 𝑁 that goes from sample 𝑘 up to 

𝑘 + (𝑁 − 1) is defined as the sum of the squares of its values in this interval, i.e., 

𝐸𝑘 = ∑ 𝑥𝑛
2

𝑘+(𝑁−1)

𝑛=𝑘

 

This sequence of samples can be viewed as the multiplication of the original signal by a rectangular 

window of length 𝑁 starting at sample 𝑘. Assuming the independent variable 𝑛 denotes time, we can 

define the discrete power 𝑃𝑘 of this signal as simply the mean value of its energy in this interval, which 

will have the dimensionality of energy over time, i.e., 

𝑃𝑘 =
𝐸𝑘

𝑁
=

1

𝑁
∑ 𝑥𝑛

2

𝑘+(𝑁−1)

𝑛=𝑘

 

The power as defined above make the measure more robust in relation to the window length, allowing 

for comparable levels for different window lengths. 

Both the energy 𝐸𝑘 and power 𝑃𝑘 of a signal are, therefore, positive values and are usually converted to 

a logarithmic scale known as decibel (db) which is defined as 

𝑺𝑑𝑏 = 10 log10(𝑆) 

to better cope with the large dynamic range (many orders of magnitude) arising from these simple com-

putations. 

The signal power can be used as a first measure to analyse the signal and can, in fact, be used in order 

to generate the necessary events for train detection. It is probably the simplest and fastest way to detect 

the passage of trains as long as the silence power levels for each channel are below a certain threshold, 

which can be derived from sample data for each channel in an initial run. 

4.4.3 Section and Step Length 

The window length 𝑁 plays an important role in the analysis of the signal. For accuracy, it is desirable 

to use the shortest window length possible that still reflects the low frequency components which are 

important. 

The step size 𝑘, which is the number of samples to move the window, reflects the frequency with which 

the results are reported and usually allows for overlapping windows. 

This means that the power calculations for the next windows will reuse many samples from the previous 

windows, effectively working as a lowpass filter and blurring the results by a certain amount. 

Figure 4-7 shows the resulting plot when 𝑁 = 2500 and 𝑘 = 250𝑠 where 𝑠 = 0,1,2, …, that correspond to 

1 second long windows at every 100 ms. In this case, there are 8991 steps, 1 for the first second and 

10 for each of the remaining 899 seconds of the 900 second interval. 
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Figure 4-7: Raw data power using a 2500 sample (1 sec) window and a 250 sample (0.1 sec) step 

The bright traces are clearly recognizable and stand out from the mostly dark but noisy background. It 

can be clearly seen that there were 3 trains going from Münsingen (channel 0) in direction to Thun 

(channel 1189) which move at almost constant speed (slope) and another moving in the opposite direc-

tion which makes 2 stops (accelerates and decelerates). 

As expected, the trains “disappear” when they are not moving, as can be seen when the train moving 

from Thun towards Münsingen stops at each station. 

Many other features also stand out from the noisy dark background: 

• Many smaller inclined lines with both positive and negative slopes are seen on the higher chan-

nels (where the highway is close to the tracks) 

• Very low energy levels (very dark) at the Kissen station (around channel 820) 

• Very low energy and signal “jump” at Wichtrach station (around channel 480) which indicates 

fiber slack (loop). 

• Some sections with a “rectangular” shape which indicate that the channels are “tied” together, 

i.e., vibrate in unison (short bridge length and a few other places). 

• Many vertical lines in the background 

Using a different window length of 500 samples (200 ms) and the same step size of 250 samples 

(100 ms), the resulting power plot is shown in Figure 4-8. 

Apparently, the differences at this scale are not very significant at first glance but we can expect the 

bright traces to be narrower for the shorter window length. 

It should be noted that using 500 sample windows will result in 8999 steps for the 900 second (15 

minute) interval as only the first step will be skipped. In order to be able to compare the results we have 

skipped the first 8 steps for this window size so that both windows are aligned in time and start after 

2500 samples have been gathered. 

Both plots can be interpreted as the power calculated with a window which ends at the current sample, 

i.e., using the previous 𝑁 samples up to the current one and both start at the same time, which is 1 sec-

ond after the start of the sample 15-minute interval used for the current report. 



  smartrail 4.0 LCS Localisation 

 

 

  Seite Page 74 of 168 

 

Figure 4-8: Raw data power using a 500 sample (0.2 sec) window and a 250 sample (0.1 sec) step 

Figure 4-9 shows the power difference between the 2500 and 500 sample windows, which makes it 

apparent that the edges present larger differences and confirms the hypothesis of shorter trace widths 

using a narrower window. Also, narrow windows will produce sharper edges but will also present more 

noise in both the background and signal areas. 

 

Figure 4-9: Difference between the raw 2500 sample (1 sec) and the 500 sample (0.2 sec) window 

In these pictures, low values are represented with a darker shade while high values are represented by 

a brighter shade. It can be seen that, horizontally, there is a darker line that always precedes a bright 

one in time. This means that a longer window will present lower values for the train front and higher 

values for the train rear. 
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4.4.4 Highpass (DC notch) Filter 

Some channels present a slowly varying fixed offset (DC level) that should be removed as this greatly 

affects the power calculations and induce large errors at the thresholding stage. This means that some 

sort of filtering needs to be done on the original signal in order to remove these very low frequency 

components before calculating the power of the signal. 

A simple DC notch filter should be enough to remove DC and very low frequencies and its design re-

quires the specification of a single parameter. One possible design parameter is the specification of the 

filter’s cutoff (half power) frequency which leads to the desired filter rate which can then be used for its 

implementation. 

As an example, using a rate of 0.995 (adaptation constant of 200 samples) would create a DC notch 

filter with a cutoff frequency of around 2Hz (1.99442Hz) using a 2500Hz sampling rate. Also, the removal 

of some very low frequencies should help with the removal of some periodic noise that could be respon-

sible for some of the vertical artefacts seen on the previous power plots. 

Figure 4-10 shows the resulting plot using the 2500 sample window on the DC notch filtered signal. 

Comparing it with Figure 4-7, it is clear that the background has lower power levels (is darker), indicating 

that there was a significant amount of power that was derived from these very low frequencies which 

was removed using the DC notch filter. 

 

Figure 4-10: DC notch filtered data power using a 2500 sample (1 sec) window and a 250 sample (0.1 sec) step 

Figure 4-11 shows the resulting power plot using the DC notch filtered signal with 500 sample long 

windows. The same remarks can be applied here, when comparing it with Figure 4-8. Once again, at 

first glance it is not easy to distinguish the differences between these 2 plots but a careful inspection 

shows the blurring caused by the longer window length.  

For completeness, Figure 4-12 shows the difference between the power plots for the 2500 and 500 

sample long windows when using the DC notch filtered signal. Careful comparison with Figure 4-9 re-

veals a much smoother background, showing that most vertical artefacts due to low frequency compo-

nents have been removed from both window lengths, otherwise they would have to appear as a dark 

and bright pair of lines in the difference plot. 
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Figure 4-11: DC notch filtered data power using a 500 sample (0.2 sec) window and a 250 sample (0.1 sec) step 

 

Figure 4-12: Difference between the DC notch filtered 2500 sample (1 sec) and the 500 sample (0.2 sec) window 

It should be noted, however, that the lower channels still exhibit quite a large amount of low frequency 

power (bright background) which suggests that a stronger high pass filter should be applied. However, 

the amount of filtering should be just enough in order to make the background behave like white noise, 

if possible, as it also eliminates important signal information. 
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4.4.5 Spectrum Analysis 

Better tools for dealing with both the noise and the data are available by transforming the signal into the 

frequency domain. 

By increasing the computational power required to process the signal but still keeping it well within the 

bounds of current technology to do this in real time, we can calculate the power spectrum density (PSD) 

for each channel which, in turn, can be manipulated with the objective of eliminating noise and undesired 

signals as well as allowing the use of other metrics for thresholding which are invariant to scale (ampli-

tude independent). 

The PSD will decompose the signal power into its constituent frequencies which allows us to basically 

try to remove our dependency on the magnitude of the spectrum (amplitude) and concentrate on its 

distribution of energy among its frequencies (profile) expecting that train signals present an entirely 

different profile from the one from noise. 

The basic tool for frequency analysis is the Discrete Fourier Transform (DFT) which possesses a fast 

algorithm for its computation known as the Fast Fourier Transform (FFT). Some details about the DFT 

which are worth mentioning are: 

1. Both the time and frequency sequences are periodic with period given by the interval length: an 

implicit assumption given by the nature of the DFT is that the input sequence is periodic and so 

is the transformed sequence; 

2. Time localisation is lost: the values of the transform give the frequency components for the 

whole periodic signal and altering any frequency coefficient will not result in a coherent signal 

in time (aliasing in time) - if the intention is to go back to the time domain (perform an inverse 

transform) then altering the frequency coefficients will most probably not result in a meaningful 

time signal; 

3. Energy conservation: the energy or power of the signal is preserved which means that calculat-

ing the power using the original signal samples or the transform coefficients should yield the 

exact same results (Parseval’s theorem). 

4.4.6 Signal Filtering 

As expected, the use of a DC notch filter helps with removing unwanted noise. However, as we have no 

intention to ever reconstruct a time signal but are mostly interested in thresholding a measure which 

indicates that a signal is present, we can filter unwanted frequencies in a much more efficient and easier 

manner by just eliminating the DFT bins which correspond to the unwanted frequencies (filtering in the 

frequency domain). 

In fact, our main goal is to be able to properly characterize the background noise, i.e., filter the signal in 

such a way that the resultant frequency profile resembles white noise in the time intervals when there 

is no vibration (no significant object moving). 

Also, we can expect to eliminate weaker signals by applying stronger filtering, i.e., eliminating more 

frequency bins, assuming that meaningful higher harmonics will only be present in a significant amount 

for stronger signals, which generate stronger harmonics. 

4.4.7 Power Spectral Density Estimation 

The signal power can be better estimated and broken down into its constituent frequencies by using the 

magnitude squared of its DFT coefficients. As energy is preserved by the DFT, the final power using the 

transformed coefficients should be exactly the same as the original power calculated using the original 

coefficients. 
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Having the contribution of each frequency, however, allows us to filter out the frequencies that are too 

noisy to be useful and also concentrate on the highest frequencies possible, as these will provide 

sharper edges for thresholding. 

Also, the availability of the PSD allows us to move away from the simple power calculations and into 

different measures which are based on the normalized PSD, so that the magnitude is of little relevance 

for the calculation of the measure. 

In fact, we may regard the problem of train detection using FOS as an audio activity detection and apply 

some of the methods used for speech detection in this context. 

4.4.8 Periodogram 

The periodogram is the building block of many PSD estimation techniques and consists of the squared 

magnitude of the DFT coefficients, i.e., the periodogram is nothing more than the magnitude squared 

coefficients of the Short Time Fourier Transform (STFT). 

The main problem with a single periodogram for PSD estimation is that the variance at a given frequency 

does not decrease when the number of samples 𝑁 increase. 

In fact, even if the estimate did get better for longer 𝑁 (which is not the case), we would still only be 

interested in the shortest value of 𝑁 possible to reduce the blurring caused by longer signals, as we are 

using the whole block of 𝑁 samples as the time interval for the purposes of edge detection and thresh-

olding. 

There are other methods which use many periodograms and average their results that yield better esti-

mates. These methods usually achieve lower estimate errors by reducing the resulting frequency reso-

lution. 

4.4.9 Welch Power Spectral Density Estimation 

The method of averaged periodograms, also known as the Welch method, trades PSD noise by fre-

quency resolution. It reduces noise in the estimated PSD in exchange for reduced frequency resolution. 

In general, the variance of each frequency bin is reduced by the number of periodograms averaged. 

It works by dividing the signal into overlapping segments, i.e., the original signal is split up into 𝐿 data 

segments of length 𝑀, overlapping by 𝐷 samples. This means that (𝑁 − 𝑀) = (𝐿 − 1)(𝑀 − 𝐷), where 𝑁 

is the signal length. 

Using the raw signal (without any filtering) with the following parameters: 𝑁 = 500, 𝑀 = 250, and 𝐷 =

125 results in 𝐿 = 3 segments of 250 samples in length which overlap by 50% (125 samples) generating 

3 periodograms which were then averaged resulting in the final PSD estimate for this 500 sample signal. 

These values were used for the examples presented, but different values using a higher number of 

segments would yield better estimates. Also, using a segment length which is a power of 2 might speed 

up the calculations by quite a significant margin for most FFT implementations. 

As the original signal is being simply truncated, this is the same as multiplying the original infinite signal 

by a rectangular window of length 500. 

The resulting PSD (in db) for channels 190, 820, and 1050 are plotted in Figure 4-13, Figure 4-14, and 

Figure 4-15, respectively. The train passages consist of brighter vertical strips which can be identified 

with relative ease for the first figure but with more difficulty for the other 2. 
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Figure 4-13: Channel 190 PSD (db) 500 (3 x 250 + 125) x 250 (rectangular) 

 

Figure 4-14: Channel 820 PSD (db) 500 (3 x 250 + 125) x 250 (rectangular) 

 

Figure 4-15: Channel 1050 PSD (db) 500 (3 x 250 + 125) x 250 (rectangular) 
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Due to the use of a rectangular window, spectral leakage occurs and all plots present many thin vertical 

lines that should not really exist. 

4.4.10 Spectral Leakage 

Spectral leakage is a broad term which refers to the power of some frequencies “leaking” into neigh-

bouring frequencies. 

This could be caused by sampling itself, in which case it is also referred as aliasing, but more frequently 

it is due to the multiplication of the original time series by a function which is zero outside the desired 

domain (window function). Multiplication in time results in convolution in the frequency domain so that 

the net result is that the signal DFT gets convolved with the window function DFT. 

Spectral leakage cannot be entirely eliminated but it can be reduced by using appropriate windowing 

techniques before calculating the DFT. In fact, window functions allow for the distribution the frequency 

leakage spectrally in different ways, according to each need. 

4.4.11 Windowing 

A Window function, also known as an apodization function or as a tapering function, is a function used 

to smoothly bring a sampled signal down to zero at the edges of the sampled region. This suppresses 

leakage side-lobes which would otherwise be produced upon performing a DFT, but the suppression is 

at the expense of widening the lines, resulting in a decrease in the frequency resolution. 

The rectangular window, which has been implicitly used so far, does allow for high energy leakage into 

frequencies which are quite distant from the real ones and does not produce good results. 

There exists a huge number of windows which can be used depending on the application and most of 

them present a large improvement in relation to the rectangular window regarding frequency leakage. 

A good general-purpose window is the Hann window which is defined as: 

𝑤(𝑛) =
1

2
(1 − cos (

2𝜋𝑛

𝑁
)) 

The Hann window was used for the examples presented here but there may be other windows which 

produce slightly better results, e.g., the Blackman window. The difference, however, is somewhat subtle 

and the choice of window is largely open to debate and results using different windows should be com-

pared. 

Figure 4-16, Figure 4-17, and Figure 4-18 show the resulting plots of the PSD for channels 190, 820, 

and 1050, respectively, using a Hann window. 
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Figure 4-16: Channel 190 PSD (db) 500 (3 x 250 + 125) x 250 (hann) 

 

Figure 4-17: Channel 820 PSD (db) 500 (3 x 250 + 125) x 250 (hann) 

 

Figure 4-18: Channel 1050 PSD (db) 500 (3 x 250 + 125) x 250 (hann) 
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Comparing these with the ones using the rectangular window, there is a marked improvement in the 

leakage (most thin vertical lines have disappeared) but at the expense of a less distinct and more blurred 

signal. 

Also, when using the Hann window, some frequency bins get highly attenuated and show up as dark 

horizontal lines in the above 3 plots. These frequencies are exactly 1/4, 3/8, … of the sampling frequency 

or 1/2, 3/4, … of the Nyquist frequency. 

For completeness, the PSD for all channels using the Welch method with both a rectangular and a Hann 

window are shown in Figure 4-19 and Figure 4-20, respectively. 

 

Figure 4-19: Welch PSD (db) estimate 500 (3 x 250 + 125) x 250 (rectangular) 
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Figure 4-20: Welch PSD (db) estimate 500 (3 x 250 + 125) x 250 (hann) 

These 2 plots should look alike, as they use the whole energy from all frequencies. In fact, these 2 plots 

should look pretty much the same as Figure 4-8, which is simply the power plot using the same param-

eters. 

4.4.12 Frequency Domain Filtering 

As discussed before, there is no intention of going back to the time domain so we can analyse the signal 

power in the absence of some frequency bins. In fact, we can eliminate most of the power contributed 

by the low frequency components by simply setting their DFT magnitude to 0 and computing the power 

of the resulting signal. 

Also, as discussed with the manufacturer of the sensing equipment (OptaSense), there is not much 

information collected above a quarter of the sampling frequency (2500 / 4 = 625 Hz) which would be 

attenuated in any case by the use of the Hann window. Therefore, we have also chosen to eliminate all 

frequencies above a certain value. 

The net result is a bandpass filter done in the frequency domain by eliminating some low and high 

frequency bins from the DFT. 

The resulting PSD plots using only frequency bins 6 to 40 which is equivalent to a bandpass filter from 

60 to 400 Hz are shown in Figure 4-21 and Figure 4-22 for both the rectangular and Hann windows, 

respectively. 

 

Figure 4-21: Welch PSD (db) estimate 500 (3 x 250 + 125) x 250 (rectangular) from 60 to 400 Hz 
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Figure 4-22: Welch PSD (db) estimate 500 (3 x  250 + 125) x 250 (hann) from 60 to 400 Hz 

Most background noise is gone, which now looks more uniform. Also, there is a marked difference when 

using the Hann window when compared to a rectangular window, mostly seen as better-defined edges 

and less contribution from the signal coming from the highway on the higher channels (less leakage). 

Increasing the filtering from bins 12 to 40 (120 to 400 Hz), the resulting PSD plots are shown in Figure 

4-23 and Figure 4-24 for both the rectangular and Hann windows, respectively. 

Once again comparison between the rectangular and Hann window plots reveals that the lower power 

signals coming from the adjacent road is almost entirely gone when using the Hann window. 

 

Figure 4-23: Welch PSD (db) estimate 500 (3 x 250 + 125) x 250 (rectangular) from 120 to 400 Hz 



smartrail 4.0 LCS Localisation 

Page 85 of 168 

 

Figure 4-24: Welch PSD (db) estimate 500 (3 x 250 + 125) x 250 (hann) from 120 to 400 Hz 

However, so much information has been eliminated that some channels are fading away, especially the 

ones which already had high attenuation, e.g., channel 820. 

4.4.13 Spectral Flatness 

As briefly discussed in the introduction, we are in search of a measure which is independent of the 

amplitude and can be used in an independent way, i.e., which has absolute values that can serve as 

measures for how close a signal is to noise.  

Spectral flatness (SF), also known as tonality coefficient or Wiener entropy, is a measure to characterize 

an audio spectrum. 

It is defined as the geometric mean divided by the arithmetic mean and produces a number between 0 

and 1 (both the product and sum go from 0 to 𝑁 − 1): 

SF =
√∏ 𝑥𝑛
𝑁

∑𝑥𝑛

𝑁

 

The SF should be close to 1 for white noise and close to 0 for a signal composed of a single frequency. 

It should, theoretically, gradually go from 0 to 1 as more and more energy is distributed among the 

frequencies. 

The SF, however, suffers from some serious numerical instabilities due to its numerator being the geo-

metric mean, which will suffer greatly if a single coefficient is unusually low. 

4.4.14 Entropy Spectral Flatness 

A measure based on information theory which has the same characteristics of the spectral flatness but 

does not suffer from the same instabilities has been proposed in a paper from N. Madhu (Electronics 

Letters, 5th November 2009, Vol. 45 No. 23). 
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This measure, which we call the Entropy Spectral Flatness (ESF) is calculated by first defining the nor-

malized sequence {𝑥̅𝑛} defined as (where the sum is from 0 to 𝑁 − 1): 

𝑥̅𝑛 =
𝑥𝑛

∑𝑥𝑛

 

in that each 𝑥̅𝑛 can be seen as a probability so that  ∑𝑥̅𝑛 = 1. The ESF can then be defined as (where 

the sum is from 0 to 𝑁 − 1): 

log2(𝐸𝑆𝐹 + 1) = −
∑ 𝑥̅𝑛 log2 𝑥̅𝑛

log2 𝑁
 

Both the SF and the ESF rely on the background being composed of white noise and, therefore, should 

not be applied in situations in which this is not the case, which is shown in Figure 4-25 for completeness. 

 

Figure 4-25: ESF Welch 500 (3 x 250 + 12) x 250 (hann) 

Figure 4-25 makes it clear that the background noise is definitely not white noise. Filtering the signals, 

however, makes it clear that there are low frequency components across all channels that, once re-

moved, make the background noise more similar to white noise. 

As the ESF, just like the SF, is based on normalized values, large differences in the signal power are 

lost and only the relative contribution of each frequency bin is taken into account. 

Figure 4-26 and Figure 4-27 show the ESF for the filtered signal from 60 Hz and from 120 Hz until 400 

Hz, respectively. Both plots were made using the normal ESF range from 0 to 1, i.e., they were not 

converted to decibels. 

For Figure 4-26, even though the background is now almost completely smooth, it is quite clear that the 

signals coming from the road around channel 1050 are also very noticeable. In fact, they have values 

which are on par as the ones from the train. Also, there is quite a large amount of noise in some channels 

as we get close to the train which means that the ESF is detecting them as they approach and leave 

this channel. 
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More filtering (from 120 Hz to 400 Hz), as shown in Figure 4-27, helps and makes most of the signal 

coming from the road to disappear but also, as expected, weaken the signal from the trains, especially 

for those channels that already had a low dynamic range to start with. It also eliminates most of the early 

detection and late dismissal caused by high powered low frequencies which can be heard from far away, 

as expected. 

This suggests that the amount of filtering should be done on a channel by channel basis, with some 

channels using stronger filtering than others. From initial testing, the lower frequencies are where most 

of the noise is contained, as well as low powered signals, such as the ones coming from the adjacent 

road around channel 1050. 

 

Figure 4-26: ESF Welch 500 (3 x 250 + 12) x 250 (hann) from 60 to 400 Hz 

 

Figure 4-27: ESF Welch 500 (3 x 250 + 12) x 250 (hann) from 120 to 400 Hz 
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4.4.15  Thresholding 

The result of the intra channel analysis is a binary value for each channel at each time step indicating if 

there is a train passing (1) or not (0) by each channel at this time. In a more sophisticated system, the 

threshold could in fact be a real number between 0 and 1 which encodes the confidence level that a 

train is passing by this channel at this time. 

In any case, at some point during processing, a binary decision will have to be made. For this initial 

work, we have decided to output a binary value so that the inter channel analysis can decide to use it 

or not based on the physical properties of the train being tracked. 

Also, at this point, no feedback from the inter channel to the intra channel has been implemented so 

that the thresholding is either fixed or dynamic, depending if the channel classification was done only 

once or is done continuously, respectively. Once again, at this point, we have only implemented a fixed 

thresholding based on a one-time channel classification of a time interval which should be representative 

of the train traffic in this segment. 

4.4.15.1 Single Threshold 

Single threshold is the simplest form of thresholding which is nothing more than the binary result of a 

comparison between a real value (signal) and a threshold value (threshold), returning a binary value in 

case the signal is above (1) or below (0) the threshold (or vice versa). 

The main problem with single thresholding is when the signal oscillates between values above and 

below the threshold. In this case, the resulting binary value would also oscillate between 0 and 1, i.e., it 

will present high frequency noise. 

This could be alleviated by using a nonlinear filter, e.g. a median filter, which introduces some delay 

(look into future values of the signal) but is able to eliminate isolated high frequency noise while main-

taining the high frequency (edges) of the actual, long term signal. This would improve the results as long 

as there are few values above the threshold when there is no train activity and only a few values below 

the threshold when there is train activity. Longer lengths of the median filter would allow for the elimina-

tion of lower frequency at the expense of longer delays. 

4.4.15.2 Hysteresis Threshold 

Another thresholding scheme which presents some degree of nonlinear filtering in its implementation 

makes use of 2 threshold values, using the difference between these 2 values as hysteresis so that, for 

example, a value of 1 is generated when the signal is above the first threshold for the first time and for 

every next value which is also above the second threshold, which is smaller than the first. Once the 

signal is below the second threshold, a 0 will be generated for each next value until it finally exceeds 

the first threshold again, repeating the cycle. 

It is easy to see that single thresholding can be viewed as a special case of hysteresis thresholding 

when both thresholds are the same. 

4.4.16 Channel Classification 

From the start, it was quite clear that some channels should not be used as they are sections of cable 

slack which are not laid out alongside the train tracks. Also, some sections present far too much noise 

and/or are buried in places that attenuate the signal to the point of making for a very low Signal to Noise 

Ratio (SNR), making it very difficult to discern signal from noise. 
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Also, as there are no baseline values for the noise, neither for the power spectrum nor the spectral 

flatness, there is not an absolute value which suffices for determining how much of each measure is an 

indication of the presence of a signal instead of silence. 

However, as the Entropy Spectral Flatness (ESF) has a range that goes from 0 to 1, where 1 is produced 

by white noise and 0 when the signal is composed of a single sinusoid, its value can be used to deter-

mine how much filtering should be applied so that the silence periods produce a measure which is 

“close” to 1, i.e., are composed of white noise. 

4.4.16.1 Classification heuristics 

Given the 15-minute interval used, without any prior knowledge of the values and how they would com-

pare with each other, and using the plot from Figure 4-8, we can see that: 

1. There are 4 trains passing, 3 going from bottom to top without stopping and one coming from 

top to bottom stopping at 2 stations along the route. We assume that each train may produce 

signals with different energy levels. 

2. Out of the approximately 9000 samples available, there are trains passing during approximately 

300 samples for every channel, or 3.33% of the time. 

Because there is only one train coming from top to bottom, which supposedly is on a different train track, 

and this train also stops at 2 stations, our assumptions do not hold for these 2 stations and a better 

sample (or longer one) should be chosen in order to improve the results. 

Ideally, assuming the noise has no power and each train produces a constant power, which may be 

different for each one of them, we can devise a procedure to analyze each channel and produce a single 

threshold for each one by means of clustering. In this case, as there may be up to 5 different power 

levels, we could cluster the data into up to 5 clusters but could in fact use less clusters if 2 or more trains 

produce the same energy levels. 

4.4.16.2 Clustering 

Using a one-dimensional 𝑘-means clustering, we can partition the data into up to 𝑘 clusters, each having 

a representative value which minimizes the total error for all the values. In the ideal case, the result 

would produce a perfect (0 error) fit and there would be a cluster for each different train energy level 

and one for the background, when there are no trains passing. In this case, the cluster values would be 

the exact energy levels of each train and the background (0). 

In one dimension, the 𝑘-means problem can be solved for a global optimum with O(N) complexity, which 

is not the case with higher dimensions. 

The objective function to minimize in the clustering process may not even be the total squared error 

across all partitions and it is possible that a different criterium may yield better results, however, for the 

example below, we have used the traditional squared error as the measure to minimize in the clustering 

process. 

Based on the characteristics of the sample interval, we can use up to 5 clusters in order to be able to 

partition the data in a few clusters whose sum of elements should not exceed a small percentage of the 

total number of samples (around 3.33% for the sample interval in question) and a large number of ele-

ments in the last cluster. 

4.4.16.3 Median Filter 

A median filter of length 𝑁 is a non-linear filter which produces as output the median value of the last 𝑁 

values, in the case of a real time filter. 

A median filter is an example as a border preserving filter which is able to remove some high frequency 

isolated noise but keeps sharp borders between the absence and presence of a “long duration” signal. 



  smartrail 4.0 LCS Localisation 

 

 

  Seite Page 90 of 168 

The use of a median filter will introduce a delay which is equivalent to ⌊𝑁/2⌋, e.g., a median filter with 

length 𝑁 = 5 will introduce a delay of 2 samples which, in our case, is equivalent to 200 ms. Longer 

filters allow for better filtering but are dependent on how much delay is acceptable. 

4.4.16.4 Example 

For this example, we have used 5% as being the number of samples in the first clusters and 50% as 

being the number of samples in the last cluster, using up to 5 clusters. The channels for which this 

arrangement is not possible were classified as unusable and were automatically removed from the 

thresholding process. 

The following steps were taken to prepare the data for clustering: 

1. The Welch method was used to estimate the PSD for the 15-minute interval. A section length 

of 625 samples (250 ms) every 250 samples (100 ms) was used and 10 DFTs with a length of 

256 samples (which results in a window shift of 41 samples or overlap of 215 samples) were 

averaged for each section using a Hann window. There were in total 8998 steps of 100 ms 

each. 

2. The resulting PSD estimate was filtered by only keeping frequency bins from 9 to 41, inclusive, 

resulting in a bandpass filter from 87.9 Hz up to 400.4 Hz and the ESF was calculated for each 

channel for every 100 ms step. 

3. A median filter of length 5 was applied to each channel, resulting in a delay of 200 ms. 

4. A clustering was done for each channel for 1, 2, 3, 4, and 5 clusters. The clusters were searched 

so that the number of elements in the first consecutive clusters were less than or equal to 450 

(5% of 8998) and the total number of elements in the last cluster was greater than or equal to 

4499 (50% of 8998). The smallest number of clusters with the maximum number of elements 

less than or equal to 5% was chosen as the representative number of clusters. 

5. A threshold was chosen for each channel based on the minimum value of the last partition to 

be included so that the total number of elements is still less than or equal to 5% of the total 

number. 

6. During runtime, another median filter of length 5 is applied across all channels. This does not 

introduce any delay or shift as the interval for which the median is calculated is centered on the 

channel being filtered. 

Using the previous assumptions, the following channels did not present any solutions and were auto-

matically excluded based on the ESF: 

0, 1, 2, 3, 5, 475, 479, 480, 483, 484, 1172, 1174, 1175, 1177, 1179, 1180, 1181, 1182, 1188, 1189. 

The resulting thresholded data for the sample interval is shown in Figure 4-28. 
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Figure 4-28: ESF threshold based on clustering 

In order to test if the threshold values would hold for data outside the sample interval, the same thresh-

olds were used for the whole 1 hour period, starting at exactly the same point as the sample interval. 

The resulting thresholded data is shown in Figure 4-29. 

 

Figure 4-29: ESF threshold based on clustering for 1 hour period 

This data was then used as input for the inter channel analysis. Of course, there is a huge number of 

parameters that can be changed in order to improve the threshold results. 

In fact, both the power and the ESF can be used together in order to improve the results. Also, the 

clustering can be done with many different parameters and with different filtering and hysteresis thresh-

olding could be implemented. 
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It is clear from these threshold plots that there is too much filtering for channels around channel 820 

(Kissen station) which makes the trains on the track further away from the fiber to “disappear”. Also, 

filtering should be increased for the channels around channel 1050, where the highway is adjacent to 

the tracks in order to attenuate the weaker car signals. 

Finally, Figure 4-30 shows the threshold results for the whole period from approximately 6:05 up to 

13:00 from 14 June 2019 which is almost a 7 hour period. 

 

Figure 4-30: ESF threshold based on clustering from 6:05 up to 13:00 

Further analysis of this data will be included in the intra channel analysis. 

4.4.16.5 Cold Weather Data 

We have received some more FOS data which was recorded on 15 December 2019, when the temper-

ature was below freezing, in order to compare it with the one we already had, which was collected during 

summer time. 

No calibration was done for this data and the same parameters which were used before were used to 

directly threshold this winter data including the exact same threshold values. The resulting threshold 

data is depicted in Figure 4-31. 

 

Figure 4-31: ESF threshold used on the cold weather data (2 hour period from 7 to 9 GMT on 15 Dec 2019) 
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From a visual inspection, this threshold data seems to be even better, showing less interference from 

the cars passing on the higher channels, than the one for the calibration period. This seems to indicate 

that the ESF measure is quite independent from the measured amplitude which does vary depending 

of the temperature. 

4.4.17  Variable Filtering 

As mentioned before, we have implemented variable filtering in order to try to eliminate more back-

ground noise and also try to minimize the effects of the signals coming from the cars passing by on the 

nearby road. 

The filtering was done in an empirical way and, in fact, it has been increased, on average, to filter 

frequencies below 117.19 Hz and above 400.39 Hz for most channels except for the following, where in 

all cases the upper frequency is also 400.39 Hz: 

• 420 - 459: 87.89 Hz 

• 460 - 505: 58.59 Hz 

• 506 – 525: 87.89 Hz 

• 780 – 794: 87.89 Hz 

• 795 – 825: 58.59 Hz 

• 826 – 914: 87.89 Hz 

• 926 – 1019: 87.89 Hz 

• 1122 – 1134: 146.48 Hz 

This was done in an attempt to do less filtering around the stations as the signal has been shown to be 

highly attenuated in this region. 

Also, the channel classification took the one hour interval into consideration and not only the first 15 

minutes as this shorter interval only contains a single train coming down which also stops at both sta-

tions. The one hour interval has more trains going up and down and contains trains that stop and don’t 

stop in both directions. 

Just like before, we have used the same parameters to determine the single thresholds, which were 

chosen based on k-means clustering. The results are shown in the following figures. 

Figure 4-32, Figure 4-33, Figure 4-34, and Figure 4-35 show the variable filter thresholding results for 

the 15-minute, 1-hour, and 7-hour intervals on 14 June 2019, and the 2 hour interval on 15 Dec 2019, 

respectively. 
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Figure 4-32: ESF threshold based on clustering with variable filtering for the sample 15 minute interval (14 June 2019) 

 

Figure 4-33: ESF threshold based on clustering with variable filtering for the 1 hour interval (14 June 2019) 
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Figure 4-34: ESF threshold based on clustering with variable filtering from 6:05 up to 13:00 (14 June 2019) 

 

Figure 4-35: ESF threshold based on clustering with variable filtering for the cold weather data (2 hour period from 7 to 

9 GMT on 15 Dec 2019) 

For completeness, both the power and ESF (1-ESF) for the sample channels 190, 820, and 1050 are 

shown below, ready to be thresholded, i.e., with all filtering applied. 

The graphs below take into consideration the filtering used for each channel which was: 

• Channel 190: from 117.19 to 400.39 Hz 

• Channel 820: from 58.59 to 400.39 Hz 

• Channel 1050: from 117.19 to 400.39 Hz 

All data has been median-filtered with a filter of length 5 and the figures show the values as they were 

used as input for the thresholding procedure. As a reminder, this introduces a 200 ms delay which is 

still well below the required minimum, which is 1 sec. 
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Figure 4-36: Channel 190 power (db) before thresholding 

 

Figure 4-37: Channel 190 ESF (1-ESF) before thresholding 
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Figure 4-38: Channel 820 power (db) before thresholding 

 

Figure 4-39: Channel 820 ESF (1-ESF) before thresholding 
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Figure 4-40: Channel 1050 power (db) before thresholding 

 

Figure 4-41: Channel 1050 ESF (1-ESF) before thresholding 

Most channels present a better SNR using the ESF than using the Power measures, except for the ones 

which also contain signals coming from the cars in the section around channel 1050, which could be 

remedied up to a certain point by increasing the filtering. 

It should be pointed out that the higher the filtering the shorter the train will show up for the inter channel 

analysis. This can and should be taken into account when designing the train tracking algorithms. 
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4.5 Inter Channel Analysis 

4.5.1 Mapping Tables 

In order to use FOS for absolute train localisation, it is necessary to map the fiber optic cable channels 

to real world coordinates on the track. This is needed because the cable is not always laid parallel to 

the tracks and because of cable slacks (rolled up lengths for maintenance reasons). In order to sort out 

this “unused” (rolled up) channels and to get exact positions for the remaining channels, a calibration 

was done on 23 October 2019 by hammering on the catenary masts along the track which led to a high 

amplitude changes in the actual channels of the FOS measurements. The channel with the highest 

amplitude was mapped to the coordinate of the respective mast. A catenary mast is located at approxi-

mately every 50m along the track. 

The fiber optic cable in use is 445m longer than the track. At station Wichtrach, 147m of fiber optic cable 

are rolled up which was determined by analysing the energy spectrum shown in Figure 4-42. The same 

channels were also marked as “unused” in section 4.4.16.4. These channels were removed from the 

mapping. No other area of rolled up fiber optic cable was detected, which means that the remaining 

overlength is due to the non-parallel routing of the fiber optic cable. This remaining overlength was 

eliminated by linear interpolation of the channels between the catenary masts. 

 

Figure 4-42 Energy spectrum at station Wichtrach showing the area of the rolled-up fiber. 

The first step after receiving the complete mapping between track and channel was to move the catenary 

mast coordinates perpendicularly on the track with the use of OpenStreetMap [24]. As already men-

tioned, linear interpolation between the coordinates of the catenary masts was used to get the position 

for each channel between the catenary masts. 

A table was finally obtained, which contains the mapping between fixed real-world coordinates (WGS84) 

for both tracks and their corresponding fiber optic cable channels from channel 36 to 1169. To facilitate 

the calculation of distance, speed, and train length and also to simplify the Kalman Filter model used in 

chapter 4.5.2, the mapping contains the track distance in metres, starting with the origin (0m) at channel 

36. Table 4-1 shows a small extract of the mapping table. 
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Table 4-1 Small extract of the mapping table. 

Channel Latitude 
Track 1 

Longitude 
Track 1 

Latitude 
Track 2 

Longitude 
Track 2 

Distance 
Track 1 

Distance 
Track 2 

36 46.872227 7.559690 46.872218 7.559631 0.000000 0.000000 

37 46.872153 7.559711 46.872145 7.559653 8.289265 8.289259 

38 46.872080 7.559733 46.872072 7.559674 16.578531 16.578518 

39 46.872007 7.559754 46.871999 7.559696 24.867796 24.867778 
 

Figure 4-43 shows the resulting mapping at station Wichtrach. The catenary masts are marked with 

white circles with their corresponding channel number. The green and blue circles mark the position of 

the channels on the two tracks. 

Trains in Switzerland generally drive on the left-hand side, however, there can be exceptions. Currently, 

FOS is not track selective, i.e., it cannot differentiate between the tracks in which the trains are running. 

Thus, the regular driving direction is assumed. Trains from Münsingen to Uttigen are driving on track 1, 

i.e. in increasing channel order and trains from Uttigen to Münsingen are driving on track 2, i.e. in de-

creasing channel order. The fiber is laid closer to track 1. 

 

Figure 4-43 Google Earth picture showing the resulting mapping at station Wichtrach. Catenary masts are marked with 

white circles with their corresponding fiber channel. The green and blue circles mark the channel position on the track. 
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Figure 4-44 shows two areas where FOS can be affected by external influences. Cars passing on the 

highway or bridges with strong vibrations when trains pass by them. 

 

Figure 4-44 Google Earth picture showing the mapping where FOS can be affected by external influences. Cars driving 

on the highway produce noise and the whole bridge vibrates when a train is passing which makes it more difficult to get 

a clear front and rear end at this section. 

4.5.2 Train Position Prediction 

Each channel of the fiber optic cable has slightly different characteristics and, therefore, noise and signal 

levels are different from channel to channel. This results in slightly different front and rear end detections 

for each channel in the intra channel analysis, which makes it necessary to use a Kalman Filter in the 

inter channel analysis to improve the robustness of the train position detection. 

At first, the quantities of interest which are to be refined (filtered and predicted) by the Kalman Filter are 

defined. For train localisation with FOS, the position of the front and rear ends, as well as the speed and 

the length of each train are of high interest. This results in the state vector as follows: 

𝒙𝑘 =

[
 
 
 
 
𝑠𝑓,𝑘

𝑠𝑟,𝑘

𝑣𝑘

𝑎𝑘

𝐿𝑘 ]
 
 
 
 

 

where sf,k is the position of the front end and sr,k is the position of the rear end of the train along the 

track. Please note that the front end is assumed to be the position closer to the origin and is therefore 

not the real front end in the classical sense. vk is the speed, ak is the acceleration in the driving direction, 

and Lk is the train length. Figure 4-45 depicts these values visually. The acceleration vector points in the 

same direction as the speed vector. 
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Figure 4-45 Illustration of the definition of the state vector. X and Y indicate the real-world coordinates, 0m indicates the 

origin at channel 36. 

The state vector is initialized when the algorithm starts tracking the train and some measurements are 

already available to estimate all the state values. 

A train has limited acceleration and deceleration. Thus we use a constant acceleration model for the 

state prediction: 

xk = Fkxk−1 + wk 

With  

𝐹𝑘 =

[
 
 
 
 
1 0 𝑇 𝑇2/2 0

1 0 𝑇 𝑇2/2 1
0 0 1 𝑇 0
0 0 0 1 0
0 0 0 0 1]

 
 
 
 

 

being the state transition matrix, wk the process noise, and T the sampling time. 

The measurements can be written as 

𝑧𝑘 = 𝐻𝑘𝑥𝑘 + ν𝑘 

with 

𝐻𝑘 = [
1 0 0 0 0
0 1 0 0 0

] 

being the measurement matrix and k the measurement noise. 

Both the process noise wk and the measurement noise ν𝑘 are assumed to be modelled as a zero mean 

white noise with process covariance Qk and measurement covariance Rk. 
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They are defined as the expected values of the process noise and measurement noise vectors: 

𝑄𝑘 = E{𝑤𝑘𝑤𝑘
𝑇} =

[
 
 
 
 
σ𝑠ℎ 0 0 0 0
0 σ𝑠𝑡 0 0 0
0 0 σ𝑣 0 0
0 0 0 σ𝑎 0
0 0 0 0 σ𝐿]

 
 
 
 

 

𝑅𝑘 = E{𝑛𝑘𝑛𝑘
𝑇} = [

σℎ 0
0 σ𝑡

] 

The values Rk and Qk were determined by trial and error. This can be done because the actual values 

of Rk and Qk are not very important. More important is the difference between the two values. Small 

values of Qk and big values of Rk mean good filtering of the measurements. The opposite would be a 

highly dynamic model. Because of the high inertia of trains, the values for Qk and Rk were chosen for 

good filtering of the measurements. The input for the Kalman Filter comes from the Intra Channel Anal-

ysis and can be seen as a contour plot in Figure 4-46. On the horizontal axis the time is plotted and on 

the vertical axis the position along the track with the origin at channel 36. The green lines represent the 

transition between noise and signal. 

When looking at the first train which starts at second 70 and goes from bottom to top, the lower edge is 

defined as the front end of the train sf and the upper edge as the rear end of the train sr. The difference 

between front and rear end is the train length L and the slope of the two lines is the train speed. 

The front and rear ends of the four trains can be seen clearly as well as noise areas. Just around channel 

1000 some short movements can be seen, which are the cars travelling on the highway near the track 

and they add additional measurement errors. Also, around channel 1050 the measurements get poor 

because of the bridge, which is constantly vibrating when a train passes by it. But these errors will be 

removed in the Inter Channel Analysis. 

For the sake of completeness, the values used for Rk and Qk are: σh = σt = 500, σsh = σst = 0.05, σv = 

0.01, σa = 0.001, σL = 0.1. 

 

 

Figure 4-46 Results of the Intra Channel Analysis represented as a contour plot. The green lines show the transition 

between noise and signal. 
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When a new train is detected it will be tracked by the algorithm. After an initialization phase, the Kalman 

Filter will be initialized by estimating the state vector x0 from the previous measurements and the state 

covariance P0 is set to I, which is the identity matrix. Every train moving on the track has its own Kalman 

Filter, which does not change during the whole tracking. The initialization phase depends on the train 

length and on the measurement quality, because the state vector can only be initialized when the train 

is fully present (front and rear end of train) in the measurement area. 

For each new measurement assigned to a specific train, the Kalman Filter process is as follows [25]: 

1. Prediction of the state 

𝑥̂𝑘 = 𝐹𝑘𝑥𝑘−1 

 

2. Prediction of the state covariance 

𝑃̂𝑘 = 𝐹𝑘𝑃𝑘−1𝐹𝑘
𝑇 + 𝑄𝑘 

 

3. Calculation of the innovation covariance 

𝑆𝑘 = 𝐻𝑘𝑃̂𝑘𝐻𝑘
𝑇 + 𝑅𝑘 

 

4. Calculation of the Kalman Filter gain 

𝐾𝑘 = 𝑃̂𝑘𝐻𝑘
𝑇𝑆𝑘

−1 

 

5. Update state estimation with the measurements 

𝑥𝑘 = 𝑥̂𝑘 + 𝐾𝑘(𝑧𝑘 − 𝐻𝑘𝑥̂𝑘) 

 

6. Update state covariance 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃̂𝑘 

 

The Kalman Filter also plays an important role when trains going in opposite directions cross. Within 

this time interval there is only one front and one rear end measurement for both trains and the Kalman 

Filter is used to predict the state xk for this short time interval. 

4.5.3 Train Tracking 

Applying the inter channel analysis algorithm, trains can be easily tracked on their way along the track. 

Thus, FOS could be used as an additional sensor for absolute localisation. 

The inter channel analysis uses the results from the intra channel analysis as input data. Different ap-

proaches in the intra channel analysis are compared here and the best one will be chosen for the final 

evaluation with the axle counter data as ground truth. 

For the first evaluation 15 minutes of the data from the measurement day on 14 June 2019 were used. 

Figure 4-47 shows the results from the Intra Channel Analysis as a contour plot in green. The red lines 

are the calculated transitions between noise and signal from the Inter Channel Analysis. It can be seen 

that the four trains were tracked very well. It can be seen that the Kalman Filter does a god job in 

predicting the train position even for the train that going from top to bottom and stops at both stations. 

When a train stops it does not produce any vibrations and cannot be “seen” with FOS. Later in section 

4.5.5 it will be investigated at which speed a train gets “lost” by FOS. 
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Figure 4-47 Comparison between Intra and Inter Channel Analysis in a contour plot. The green lines represent the tran-

sition between noise and signal and the red lines show the achieved tracking of trains. 

Figure 4-48: shows four plots with different approaches and parameters used in the Intra Channel Anal-

ysis and the corresponding results achieved in the Inter Channel Analysis. The parameters used can be 

found in the title of each plot. First of all, the method applied is mentioned, whereby we distinguish 

between Power and ESF Thresholding. For more detailed information, please refer to chapters 4.4.12 

and 4.4.14. Secondly, the used threshold for deciding between noise and signal is mentioned, followed 

by the used frequency band. The delay specified at the end results from the use of a median filter. When 

using the power for signal detection it can be seen that the cars can be filtered well, which is not the 

case when using ESF for the detection. Later on, in section 4.5.5, it will be shown that using ESF leads 

to more precise length estimations, especially for the trains going from top to bottom. They are located 

further away from the cable and that’s why they are generally determined shorter than trains on the track 

closer to the fiber.  

 

Figure 4-48: Different approaches and parameters in the Intra Channel Analysis and the calculated tracking of front and 

rear ends by the Inter Channel Analysis 
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The use of a median filter improves the data, as can be seen when comparing top right and bottom left 

plot. There are less disturbances (False Positive detections) in exchange for a longer time delay. How-

ever, considering that GNSS, balises and axle counters all work with the accuracy of seconds, the delay 

of 0.2s is definitely acceptable (a median filter with a length of 5 samples introduces a delay of 2 samples 

and each sample is 100ms in this example). 

The last parameter set in the bottom right plot also uses a median filter along channels. This makes the 

edges of the train more accurate, but at the same time the disturbances get more visible. This filtering, 

however, should be applied after the mapping table is used to convert from channel number to linear 

track distance. In this example, this second median filter was applied directly to the channel numbers 

but this should be revised. 

Sections 4.5.4 and 4.5.5 compare the proposed methods and parameters in order to identify the “best” 

among them. 

4.5.4 Train Speed 

The train instantaneous speed, which is defined as the rate of change of its position in relation to time, 

is another important quantity that needs to be estimated. 

One possibility to calculate the train speed is to calculate the slopes of the front and rear end (which 

may not be the same specially when the train has non zero acceleration). This only needs to be done 

when initializing the Kalman Filter. Afterwards the speed is available from the state vector defined in 

section 4.5.2 anyway. 

All methods and parameters of Intra Channel Analysis, which are compared in the following, achieved 

very similar results in speed estimation. 

Figure 4-49 shows the speed of the four trains for the settings shown in bottom right plot of Figure 4-48:. 

As discussed in section 4.5.5, the best results were achieved using these settings. Unfortunately, there 

is no ground truth for the speed of all tracked trains measured with FOS on 14 June 2019, so no mean-

ingful results can be presented in this section. But the tracking contains 9 runs with the measurement 

train (mewa 12) which was equipped with GNSS. The comparison with GNSS is shown in section 6.3.4, 

where the speed is also evaluated. 

 

Figure 4-49 Speed of the four trains shown in bottom right plot of Figure 4-48:. 
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4.5.5 Front and Rear End Determination 

Another important parameter for train integrity determination is the train length. Being able to measure 

the length of the train continuously along its way on the track, train integrity could be easily determined 

at any moment. In this section it is investigated how to use FOS for train integrity. 

The train length can be derived from the difference between front and rear end and, just like the speed, 

is a variable in the state vector defined in section 4.5.2. 

For all the different methods and parameters in the Intra Channel Analysis, Figure 4-50 shows the cor-

responding lengths to the tracking in. 

Regarding the calculated lengths for trains 1, 3 and 4, it can be seen that the trains are estimated to be 

longer than they actually are. This can be explained by the fact that the vibrations of a train are measured 

even before the train arrives at this channel and continues after it leaves. However, it will be shown later 

that this length offset can be corrected. Train 2, on the other hand, is only estimated longer than it really 

is by using the ESF with variable threshold and median filter along the channels. Since train 2 runs on 

the track further away from the fiber cable, it seems that this method is more robust against the distance 

to the fiber optic cable. 

 

 

Figure 4-50 Lengths of the four trains compared for all the settings in the Intra Channel Analysis. Lengths match with 

Tracking in Figure 4-48:. 

According to section 4.5.3 the power method with variable threshold had the advantage of a good filter-

ing of the cars on the highway. In Figure 4-50 it can be seen that this method is highly dependent on 

the vibration intensity. The calculated length becomes more inaccurate with smaller trains (train 4) and 

greater distance to the fiber optic cable (train 2). 

In the end, the ESF method with variable threshold and a median filter along the channels proves to be 

the best choice. 
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Another striking feature is the variation in the length of train 2, which occurs for all methods. Due to their 

similarity with the train speed, the correlation between length and speed was calculated and it was 

determined to be a linear dependency. This can be explained by the process of PSD estimation in the 

Intra Channel Analysis. The PSD was calculated using a 625-sample window. This means that in the 

worst case the detection of the front and rear ends could be shifted by this value. For a sampling rate of 

the interrogator unit of 2500Hz this would correspond to a delay of 625/2500Hz = 0.25s, which could 

explain the dependency on the speed. 

Furthermore, the train is stretched or compressed during acceleration or braking due to the degrees of 

freedom in the couplings. 

In order to get the correlation parameters, a simple optimisation problem was solved. Therefore, the 

tracking algorithm was applied to a data set that covered a period of 1 hour. Within this time period, 17 

trains were tracked with different lengths and speeds. The optimisation problem was chosen to minimize 

the error between the real and calculated lengths: 

𝑚𝑖𝑛
𝑔

∑|𝑒𝑖|

𝑁

𝑖=1

 

with the error defined as 

𝑒 = 𝑙𝑟 − (𝑙𝑐 − 𝑔1|𝑣|)𝑔2 

where i stands for the evaluation at N different time points. lr is the real length, lc is the preliminary 

calculated length (rear end position minus front end position), v is the train speed and g1 and g2 are the 

optimisation parameters. The linear correlation with the speed shall be described by g1 and a possible 

offset should be eliminated by g2. 

The optimisation problem was solved separately for each track because of the dependency on the dis-

tance between the track and the fiber. Even though the intra channel analysis using the ESF with vari-

able threshold is more robust in relation to the track distance, this dependency still exists. 

The corrected train lengths for the four trains currently under consideration can be seen in Figure 4-51 

as red curves. These are the curves after the tracking with the Kalman Filter and the applied correction 

from the optimisation. The blue curves show the calculated train lengths after the intra channel analysis 

only. As expected, the inter channel analysis and correction results in a significant improvement. Please 

note that the train length correction was not yet considered in Figure 4-47 and Figure 4-48:, but it will be 

for all following results. The calculated length after the Intra Channel Analysis also corroborates the 

choice of the parameters Qk and Rk in the direction of better filtering instead of more dynamics. 
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Figure 4-51 The calculated train length compared to the real length. In blue the train length after the Intra Channel Anal-

ysis, in red the corrected train length after Inter Channel Analysis and in yellow the real length. 

Figure 4-52 shows the corresponding boxplot to Figure 4-51 containing the errors of the corrected length 

to the real length. The initialization phase at the beginning of the tracking, where the train is not fully 

present in the measurement area, is excluded in the error calculation. All values are within the interval 

+-20m.  

In the top right plot of Figure 4-51 the blue line shows the train length calculated after the Intra Channel 

Analysis. The train gets “lost” when the train stops which leads to a calculated length of 0m for the Intra 

Channel Analysis. Standing trains cannot be measured with FOS because they do not produce vibration 

in that time. Nevertheless, with the help of the Kalman filter the train can still be followed here by pre-

dicting its position. We manually analysed the part when the train gets “lost” to make a statement about 

the speed at which the train disappears. It turned out that this happens at speeds of around 10m/s. In 
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section 6.3.4, when comparing results with GNSS even smaller speeds are measured with our algo-

rithm. 

 

 

Figure 4-52 Boxplot showing the distribution of the train length error for all four trains. The initialization phase was 

excluded because there the train is not fully present in the measurement area. 

4.5.6 Results 

The advanced tracking discussed above was applied on the whole data set from 14 June 2019, which 

covered 6:55 hours. Since it is known that the FOS measurements are dependent on temperature, the 

tracking algorithm was also applied to the measurements at low temperatures on 15 December 2019, 

which covered 2 hours. 

All parameters and constants from both the Intra Channel Analysis and the Inter Channel Analysis were 

calculated using the data of a 1 hour period from 14 June 2019 and are fixed for the evaluation of the 

rest of the available data. 

With the whole data, the algorithm was used in order to test its reliability in finding the trains and its 

accuracy in calculating their lengths. The real lengths of the trains travelling in these periods were pro-

vided by a train schedule. Table 4-2 shows the results regarding the number of trains which were suc-

cessfully tracked (123 for 14 June 2019) compared to the amount of trains listed in the train schedule of 

that measurement day. For the data of 14 June 2019 the algorithm found 2 more trains than what was 

listed in the schedule. A manual review of the measured data showed that these are really existing trains 

and not errors of the algorithm. For the data measured on 15 December 2019 30 of 30 trains were 

tracked by the algorithm. 

Table 4-2 Availability based on trains that have been successfully tracked. 

Availability 
(Tracked trains) 

Target amount 
- 

Actual amount 
- 

Percentage 
% 

14 June 2019 121 123 101.65 

15 December 2019 30 30 100 
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Table 4-3 shows the accuracy of the FOS algorithm based on the error between the calculated and real 

lengths from the train schedule. The calculated length of each of the 123 trains was compared with the 

reference length from the train schedule at all times, which leads to a large amount of data points. The 

table shows that the error of 87.13% of the data points from 14 June 2019 lies within 20m. The appro-

priate distribution for the data of 14 June 2019 is shown in Figure 4-53 with the calculated gaussian fit 

in red. A nearly zero mean distribution with a precision of 9.0383m was estimated. The estimated pre-

cision is close to the channel length of about 8m. 

The distribution for the data of 15 December 2019 is shown in Figure 4-54. The result of the gaussian 

fit is again nearly zero mean with a precision of 7.218m. The results show very well that the parameters, 

which were estimated using a short period of the data from 14 June 2019 also achieved very good 

results on the data from 15 December 2019. A temperature dependence cannot really be detected. 

Results seem to be even better. 

Table 4-3 Accuracy based on the absolute error between calculated length and real length. 

Accuracy 
(length error) 

Data 
points 

< 5m 
% 

< 10m 
% 

< 15m 
% 

< 20m 
% 

Min 
m 

Max 
m 

14 June 2019 339907 40.89 63.47 78.03 87.13 3.45e-12 84.19 

15 December 
2019 

78975 43.82 67.17 77.73 86.02 8.57e-05 62.43 

 

 

Figure 4-53 Distribution of the train length error for all trains measured on the 14 June 2019. The gaussian fit calculated 

a nearly zero mean distribution with a precision of 9.0383m.  
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Figure 4-54 Distribution of the train length error for all trains measured on 15 December 2019. The gaussian fit calculated 

a nearly zero mean distribution with a precision of 7.218m. 

Figure 4-55 shows the distribution of the train length error for every tracked train on 14 June 2019. On 

the x-axis the 123 trains are plotted. The y-axis is the train length error shown as a boxplot. The blue 

boxes show the range of 50% of the data points and the red marker inside the box is the median error. 

The dashed lines mark the range of the remaining points except if there are outliers which are marked 

with red crosses. The measurement train (mewa12) is marked with the dashed green lines and all drives 

with it show very good results. Figure 4-56 shows the distribution for every tracked train on 15 December 

2019. 

For most of the trains the error lies within the range of +-20m. There was not enough time for further 

investigation for the trains where the train length calculation did not fit well. This should be a point to be 

included for a possible next step. It is not impossible for the schedule to also contain some wrong data 

regarding the train lengths and, in this case, the data should be compared with a revised schedule.  
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Figure 4-55 Distribution for every tracked train on 14 June 2019 shown as a boxplot. On the x-axis the tracked trains are 

plotted and on the y-axis the error of true length to calculated length. The measurement train (mewa12) is marked by the 

dashed green lines. 

 

Figure 4-56 Distribution for every tracked train on 15 December 2019 shown as a boxplot. On the x-axis the tracked trains 

are plotted and on the y-axis the error of true length to calculated length. 
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5 Multi-sensor Setup 

5.1 Introduction 

Every sensor has its strengths and weaknesses and is available or unavailable under certain conditions 

(e.g. GNSS is not available in tunnels). Hence, no sensor can fulfil the required SIL (e.g. SIL 4) as a 

standalone system for highly available, accurate and safe localisation over all use cases. A possible 

solution to this problem is to combine two or more independent and diverse sensors to sensor systems 

(see Figure 5-1). In order to achieve the desired SIL, a suitable combination of sensor signals is needed. 

For systematic investigation on identifying these suitable combinations, all possible sensors and their 

characteristics are first documented in a morphological box (cf. [1]). In a second step the independent 

sensors with different types of errors can be combined to sensor systems.  

Regarding the ongoing Proof of Concept (PoC) the following sensor systems are assessed and com-

pared: 

• GNSS / IMU / Wheel odometry 

• Visual Odometry /Video landmarks 

• Balises / Wheel odometry 

• FOS 

While the first two sensor systems are new inventions, the third one is state of the art and it is used in 

ETCS. Another promising sensor system which was not considered in this PoC might be the combina-

tion of Video / IMU. 

Choosing an x-out-of-y system architecture (y >=x) increases the safety of the localisation. In this archi-

tecture y different independent sensor systems are taken into account while at least x sensor systems 

have to deliver similar results to gain a valid sensor value. Otherwise the sensor signals for this time 

stamp are not valid. If x or more sensor system signals are similar, the sensor data fusion chooses the 

most appropriate sensor system data for localisation according to a predefined criterion, e.g. the confi-

dence level. Figure 5-1 shows an example of a x-out-of-y system architecture. 

 

Figure 5-1: Example of a x-out-of-y system architecture 
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5.2 Consideration of certification 

Considering the certification of sensor systems in a x-out-of-y system architecture, the aim should be to 

separate the sensor signal processing and the fusion algorithm from a monitoring function in a risk-

based approach. Figure 5-2 [26] shows an example of such a separated architecture. In this case, the 

monitoring function requires high SIL (e.g. SIL 4) and it is framed by a grey box. 

The major benefit of this approach is that only the monitoring and voting functions have to developed 

according to the CENELEC standard with the given SIL. The sensors have only to be qualified to be 

used in railway environment. Cross acceptance from other domains like aerospace would also be pos-

sible. A certificate for qualification of sensors can be obtained by independent accredited test laborato-

ries according to Figure 5-3. 

The development of such a system can be faster, more economical and lower in risk and the certification 

is easier to achieve. Only the monitoring function needs to fulfill an appropriate SIL and a CENELEC 

compliant development process. 

More details about certification can be found in [27]. 

What is more, even a sensor system using machine learning approaches could be deployed in such an 

architecture, if qualification is possible. 

 

Figure 5-2: Functional architecture of a localisation system with safe integrity check (from “Machbarkeitsstudie für eine 

genaue, sichere Lokalisierung” [26]) 
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Figure 5-3: Overview: Qualification of a sensor system [27]) 
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6 Measurement runs 

6.1 Overview of measurement runs 

The following evaluations were carried out in the context of this report: 

 

Table 6-1 Overview of measurement runs 

6.2 Ground truth 

In the following the background for assessing the various technologies and comparing them to a valid 

and accurate ground truth is described according to [28]. 

“In SIL 4 approved ETCS Level 2 operation, a train sends its train position report (TPR) once every 6 

seconds (SBB configuration), on average, to the Radio Block Center (RBC). The TPR consists of the 

last passed balise (group) and the travelled distance from there as well as the direction of travel. To 

overcome the issues of certification, in a 1st stage it is proposed to prove that the new localisation 

system has the same performance regarding quality and safety than the certified one (GAMAB princi-

ple). Therefore, with the new localisation system (regardless of the technology) the same TPRs have to 

be generated with at least the same quality. The successful comparison of the statistical relevant num-

ber of TPRs between the current and new systems can be used to get approval according to e.g. CSM 

2013/402/EC.  

In addition to the balises, axle counters could also be used, since they are also approved for SIL 4. 

Within video localisation with GNSS synchronized time, global drift compensation can be done with 

artificial reference points (e.g. AprilTags) and rail infrastructure other than balises (e.g. points, bridges, 

catenary masts). However visual balise or axle counter detection will be used - without the need for a 

separate sensor – in order to trigger the TPR generation or time synchronization for comparison pur-

poses. With a successful proof of the same or better quality of the new system, ”artificial balises” can 

be introduced wherever required to meet the requirements for realizing moving block. 

At the same time, this will lead to a lean and promising migration strategy (no change of the ETCS 

interface to the RBC).”  

Date Route Type Sensors

14.06.19 Ostermundigen - Thun Measurement with SBB diagnostic vehicle Video; FOS; GNSS/IMU; 

23.10.19 Münsigen - Uttingen Calibration FOS System FOS only

03.12.19 Bern Measurement in Depot Video only

15.12.19 Münsigen - Uttingen FOS Data extraction (low temparature) FOS only

21.01.20 Münsigen - Uttingen FOS Data extraction (temparature below freezing) FOS only

05.02.20 Bern - St. Gallen - Bern Measurement run with Regular train Video only

12.02.20 Bern - Brig - Bern Measurement run with Regular train Video only

04.03.20 Biel - Lausanne - Biel Measurement run with tilting train (ICN) Video only
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Figure 6-1 - time synchronization and references for ground truth 

Time stamps of axle counter log-files and TPRs can be adjusted to GPS time when detected in the video 

frame. Distance from camera to axle counter or balises resp. can be calculated according to [2]. With 

known speed, the time when passing the balises or axle counters can be derived. Time resolution de-

pends on the frame rate and is equal to 16.7 ms when using a 60 Hz frame rate, which is our case. 

For the comparison (and fusion) of data of different sensors it is important to compensate for the different 

latencies. An event at a given time t will be available on the hardware output of the sensor after an 

acquisition time tac (e.g. reading out the CCD chip or analogue to digital conversion). The digital pro-

cessing (e.g. image or signal processing, filtering) will need another time tpr to be completed. That means 

that the sensor system output for the event at time t will be ready to use at time t+tac+tpr. Assuming real-

time processing the worst-case latency will be twice the sampling time. If there is any phase lag e.g. 

due to windowing/filtering it can be even more. For each sensor system the latencies have to be deter-

mined or estimated. 

With all sensors synchronized to the same time source, taking into account the different sensor depend-

ent latencies, it is possible to compare them all at the given reference positions of the axle counters and 
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balises. For the measurements on June 14th, we had access to log files of 5 axle counters which were 

used to compare all sensor technologies involved, which are detailed in the next section. 

According to current discussions with certification experts, this approach is suitable to be accepted as 

standard operational procedure for the qualification of sensors. 

6.3 Results and Comparison 

6.3.1 Visual Odometry (1D) 

6.3.1.1 Traveled distance: comparison with GNSS / IMU and GTG 

The travelled distance calculated with Visual Odometry is compared to a combination of GNSS / IMU 

and to track topography (GTG). The measured distance with Visual Odometry is in accordance, within 

the given systematic uncertainty, with the distance measured with GTG and GNSS/IMU (Figure 6-2). 

By comparing the position calculated with Visual Odometry with GTG and GNSS/IMU measurements, 

the estimated systematic uncertainties (listed in Table 6-2) seem to be conservative. A measurement 

with lower systematic uncertainty is out of the scope of this report. It shall be noted from Table 3-5, that 

the main source of systematic uncertainty is due to the estimation of the camera extrinsic parameters 

and the determination of the absolute scale using the railway track width as reference. The automatic 

procedure for the estimation of those parameters allows for an easy implementation of the camera sys-

tem for data collection. However, in this case, the uncertainty is higher with respect to a fixed camera 

whose initial pose could be estimated with a calibration sheet (chessboard).  

 

Figure 6-2: The driven distance is calculated with systematic uncertainty (black) and compared to the GNSS/IMU 

(green) and GTG (red) measurements. 
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Table 6-2: The calculated distance values with systematic uncertainty are listed and compared with GNSS/IMU and 

GTG.  * Due to problem to the dataset with GNSS/IMU, data containing GNSS only are used. 

Drive GTG  GNSS/IMU Visual Odometry  
 Value  

(m) 
Value  
(m) 

Value  
(m) 

Uncertainty  
(m) 

Relative difference 
 to GTG (%) 

Relative difference 
 to GNSS (%) 

OT_1H 26406 26408 26405 202 0.0 0.0 

OT_1R 26297 26288 26261  180 -0.1 -0.1 

OT_2H 25515 25513 25479  197 -0.1 -0.1 

OT_2R 25524 25522 25430  173 -0.4 -0.4 

OT_3H 26230 26225 26203  203 -0.1 -0.1 

OT_3R 26403 26407* 26291  181 -0.4 -0.4 

OT_4H 26402 26397 26373  204 -0.1 -0.1 

OT_4R 26352 26344 26195  180 -0.6 -0.6 

 

6.3.1.2 Traveled distance: comparison with balises 

The calculated distance is also compared to the distance between balises. 

The balises can be identified in the collected images. The first balise of each balise group is taken for 

the calculation of the distances. Figure 6-3 shows the nominal distance (black) from DfA, the distance 

calculated by using the GNSS/IMU combined measurement (red) and the distance calculated by Visual 

Odometry (blue). Figure 6-4 shows the relative distance between the nominal values and the values 

measured by Visual Odometry (blue) and by the GNSS/IMU combination (red). As it can be seen, a high 

grade of congruency can be achieved by comparing the nominal distance with the one calculated with 

Visual Odometry. In Table 6-3, the calculated distance between consecutive balises is summarized. 

    

Figure 6-3: The nominal distance (black) from DfA, the distance calculated by using the GNSS/IMU combined measure-

ment (red) and the distance calculated by Visual Odometry (blue) are compared.  
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Figure 6-4 The distance between nominal and measured values, divided by the nominal distance is shown. The meas-

ured values are from Visual Odometry (red) and from GNSS/IMU (black). 

Table 6-3: The results of the measured distance between two consecutive balises (distance between column Balise A 

and column Balise B) are summarized. Data of balises are taken from DfA. 

Balise A Balise B Nominal 
distance (m) 

VO 
distance (m) 

VO 
difference (%) 

GNSS+IMU 
distance (m) 

GNSS+IMU 
difference (%) 

B453-10646 B453-10652 425 426.5 -0.4 438.3 -3.1 

B453-10652 B453-10658 923 920.6 0.3 897.4 2.8 

B453-10658 B453-10675 329 326.8 0.7 321.8 2.2 

B453-10675 B453-10637 1071 1069.2 0.2 1079.7 -0.8 

B453-10637 B453-10639 220 220.4 -0.2 213.4 3.0 

B453-10639 B453-07974 1236 1231.4 0.4 1232.1 0.3 

B453-07974 B453-10640 88 88.5 -0.6 11.9 -27.2 

B453-10640 B453-07977 719 719.7 -0.1 712.6 0.9 

B453-07977 B453-08483 463 464.8 -0.4 477.0 -3.0 

B453-08483 B453-07979 208 209.4 -0.7 201.6 3.1 

 

6.3.1.3 Speed: comparison with GNSS / IMU 

The absolute speed of the train is calculated from the traveled distance and the framerate of the camera. 
In Figure 6-5 (left) to Figure 6-12 (left), the absolute speed calculated with Visual Odometry (blue) is 
compared with the one measured by the combination (red) of GNSS and IMU for drives OT_1H to 
OT_4R. It can be seen, that the shape of the measured speeds by Visual Odometry matches the shape 
of the speeds measured by GNSS combined with IMU, in all the data runs analysed.   

The distribution of the difference between the speed value measured from the combination between 
GNSS and IMU with the one measured with Visual Odometry, is shown in Figure 6-5 (right) to Figure 
6-12 (right). From a gaussian fit of the distribution, the mean value of the speed difference and the 
standard deviation are estimated. 

Table 6-4 shows the fit results. The trueness is defined as the mean value of the difference between the 
speed measured by the reference (GNSS combined with IMU) and the speed measured by Visual 
Odometry. The precision is the standard deviation of the distribution of the speed difference or in other 
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words: the precision of the localisation is within the accuracy of the ground truth. As it can be observed, 
larger values of the trueness and larger values of the precision are observed in drives where the 
locomotive drives backwards (drives OT_1R, OT_2R, OT_3R, OT_4R) with respect to drives where the 
locomotive drives forwards (drives OT_1H, OT_2H, OT_3H, OT_4H). This forward/backwards 
asymmetry is under investigation and is observed also in Table 6-2, where the relative difference of the 
traveled distance with respect to GNSS/IMU is slighlty larger when the locomotive drives backwards. 

Table 6-4 Trueness and precision of the difference of the speed measured with GNSS combined with IMU and Visual 

Odometry. * Due to problem to the dataset with GNSS/IMU, data containing GNSS only are used. 

Drive Trueness (km/h) Precision (km/h) 

OT_1H 0.06 0.76 

OT_2H  0.12 0.57 

OT_3H 0.05 0.98 

OT_4H 0.09 0.76 

OT_1R 0.17 0.90 

OT_2R 0.24 0.78 

OT_3R* 0.37 0.80 

OT_4R 0.65 0.79 

 

 

Figure 6-5 (left) The absolute speed measured with Visual Odometry (blue) is compared to the one measured with the 

combination of GNSS and IMU (red) during the drive OT_1H. (right)  The distribution of the speed difference between the 

one measured with GNSS combined with IMU and the one calculated with Visual Odometry is shown for drive OT_1H. 
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Figure 6-6 (left) The absolute speed measured with Visual Odometry (blue) is compared to the one measured with the 

combination of GNSS and IMU (red) during the drive OT_2H. (right) The distribution of the speed difference between the 

one measured with GNSS combined with IMU and the one calculated with Visual Odometry is shown for drive OT_2H. 

 

Figure 6-7 (left) The absolute speed measured with Visual Odometry (blue) is compared to the one measured with the 

combination of GNSS and IMU (red) during the drive OT_3H. (right) The distribution of the speed difference between the 

one measured with GNSS combined with IMU and the one calculated with Visual Odometry is shown for drive OT_3H. 

 

 

Figure 6-8 (left) The absolute speed measured with Visual Odometry (blue) is compared to the one measured with the 

combination of GNSS and IMU (red) during the drive OT_4H. (right) The distribution of the speed difference between the 

one measured with GNSS combined with IMU and the one calculated with Visual Odometry is shown for drive OT_4H. 
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Figure 6-9 (left) The absolute speed measured with Visual Odometry (blue) is compared to the one measured with the 

combination of GNSS and IMU (red) during the drive OT_1R. (right) The distribution of the speed difference between the 

one measured with GNSS combined with IMU and the one calculated with Visual Odometry is shown for drive OT_1R. 

 

Figure 6-10 (left) The absolute speed measured with Visual Odometry (blue) is compared to the one measured with the 

combination of GNSS and IMU (red) during the drive OT_2R. (right) The distribution of the speed difference between the 

one measured with GNSS combined with IMU and the one calculated with Visual Odometry is shown for drive OT_2R. 

 

Figure 6-11 (left) The absolute speed measured with Visual Odometry (blue) is compared to the one measured with GNSS 

(red) during the drive OT_3R. (right) The distribution of the speed difference between the one measured with GNSS 

combined with IMU and the one calculated with Visual Odometry is shown for drive OT_3R. 



smartrail 4.0 LCS Localisation 

Page 125 of 168 

 

Figure 6-12 (left) The absolute speed measured with Visual Odometry (blue) is compared to the one measured with the 

combination of GNSS and IMU (red) during the drive OT_4R. (right) The distribution of the speed difference between the 

one measured with GNSS combined with IMU and the one calculated with Visual Odometry is shown for drive OT_4R. 

6.3.2 Visual Odometry (3D) 

Figure 6-13 shows the calculated path (in cyan) for each of the four measurements taken on the track 
from Ostermundingen to Thun, using data collected by the front camera. The calculated path is 
compared to the combined measurement from GNSS and IMU (in red). Since the GTG data are very 
close to the GNSS/IMU measurement, the former are not displayed.  

Measured data with Visual Odometry and GNSS/IMU combination match at the beginning of any path. 
A drift is expected as the traveled distance increases and it can be observed more or less in any of the 
runs.  

It shall be noted, that the measurements from Visual Odometry presented here do not rely on any 
absolute reference. This means that it could be the case that wrong measurements of few image frames 
cannot be corrected and errors in the calculated train rotation propagate till the end of the drive. This is 
probably the reason for the clearly visible difference between the GNSS/IMU reference and the 
measured data observed in path OT_2H, where measurement are in accordance up to half of the path, 
and then the position calculated from the Visual Odometry drifts away.  

The results highlight that visual odometry can be very precise on a short scale (~few kilometers) but 
needs an absolute reference to be precise on larger scale. 

If the detection of AprilTags, points or catenary masts is added to the video odometry the position can 
be corrected. 
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Figure 6-13: The calculated position (cyan) for the 4 drives (from left to right: OT_1H, OT_2H, OT_3H, OT_4H) from 

Ostermundigen to Thun and compared to the GNSS/IMU reference (red) 

6.3.3 Video Localisation 

The train position, calculated with Visual Odometry, can be more precise by using global references. In 

the following, the fixed positions of the railway points are used as reference. 

Table 3-4 shows that railway points were detected during the drive OT_1H. Once the frog of a railway 

point is identified in the image, the calculated local position is referenced to that value. This allows for a 

reset in the accumulated drift distance and a correction of the train direction. 

Figure 6-14 shows the comparison between the train position calculated with Visual Odometry only 

(cyan) and the position calculated with Visual Odometry by using the railway points as reference (yel-

low). The railway points are shown (green triangles) in Figure 6-14. The improvement can be seen by 

comparing both positions with the GNSS / IMU combination. A drift of the position calculated by Visual 

Odometry is visible and can be strongly reduced by the introduction of the global reference. The calcu-

lated train position is very much in accordance with the GNSS / IMU combination, although small devi-

ations are observed at the end of the drive, where the train approaches the station in Thun.  

 

Figure 6-14: The position calculated with the Visual Odometry (cyan) is corrected by using global reference like railway 

points (green triangles). The corrected position (yellow) is compared with the GNSS / IMU combination (red). 

The distribution of the difference between the position measured from the GNSS/IMU combination and 

the one calculated with Visual Odometry by using railway points as reference, is shown in Figure 6-15. 
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The distribution peaks at 35 meters. This is the distance from the front of the train (where the camera is 

located) to the IMU. A gaussian fit has been performed and the results are shown in Table 6-5.  

   

Figure 6-15 The distribution of the difference between the position measured from GNSS/IMU combination and the one 

calculated with Visual Odometry by using railway point as reference. The distribution peaks at 35 meters. This is the 

position of the IMU, that is located 35 meters back with respect to the camera system, that is located at the front of the 

train. (Left) The distribution ranges from 20 to 150 meters and the tails can be seen. (Right) The distribution ranges from 

33 to 37 meters.  

Table 6-5 Results of the gaussian fit of the distribution of the difference between the position calculated with GNSS - 

IMU combination and the position calculated with Visual Odometry. The gaussian fit has been performed over the whole 

distance range, from 20 to 150 meters. The mean value is the estimated distance of the camera (located on the wind-

screen) to the IMU. The precision is the width of the distribution. 

Drive Distance to the GNSS antenna (m) Precision (m) 

OT_1H 35.0 0.21 

OT_2H 35.8 0.23 

OT_3H 35.6 0.21 

OT_4H 35.3 0.26 

 

Figure 6-16 shows the comparison between the train position calculated by Visual Odometry and the 

position from track topography (GTG). The calculated train position is in accordance with GTG, although 

small deviations are observed at the end of the drive, where the train approaches the station in Thun.  

 

Figure 6-16 The position calculated with the Visual Odometry (yellow) is corrected by using global reference like railway 

points and compared to GTG (red). 

The distribution of the difference between the position measured from the GTG and the one calculated 

with Visual Odometry by using railway point as reference, is shown in Figure 6-17. The long tails of the 

distribution are likely due to the irregular spacing of the points of the position measured by GTG. Indeed, 

large distance between the reference points can occur and could lead to large deviation when compared 

to the position measured by Visual Odometry. A gaussian fit of the distribution is not suitable due to the 

long tails. 
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Figure 6-17 The distribution of the difference between the position measured from the GTG and the one calculated with 

Visual Odometry. 

 

6.3.4 FOS 

A GNSS in combination with an IMU as a reference (hereinafter referred to as GNSS / IMU) was pro-

vided for the drives of the measurement train on 14 June 2019. This should serve as a reference for the 

following evaluation. There are two important considerations that have to be made when comparing the 

two sensors: their time has to be synchronised and the reference point of the GNSS / IMU on the train 

in relation to either the front or rear end of the train must be known. 

It should also be mentioned that the comparison between FOS and GNSS / IMU was done using their 

lowest common denominator. This means that FOS can supply other values that other sensors cannot, 

e.g., train length, instantly. 

The position of the GNSS / IMU on the measurement train is known and using the mapping between 

FOS channel and real world coordinates this position can be calculated. The problem with the time 
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synchronisation was solved by estimating the time delay using the first drive with the measurement train 

(OT_1H). Figure 6-18 shows the distribution of the time delay during the first drive.  

 

Figure 6-18 Distribution of the time delay between FOS and GNSS / IMU clock during the drive OT_1H. 

The FOS time was adjusted by the estimated mean delay of 3.53s for the remaining drives. Figure 6-19 

and Figure 6-20 show the localisation errors when comparing GNSS / IMU for drives with the locomotive 

in front or the control wagon in front, respectively. 

The reference position of the antenna was used for the calculation of the time delay using a single 

measurement drive. This position, however, was not used in the comparisons shown in Figure 6-19 and 

Figure 6-20. 

The measured front position by FOS was compared to the GNSS / IMU position. Therefore, the esti-

mated mean value of the gaussian fit in Figure 6-19 is an estimation of the reference position of GNSS 

/ IMU on the train when the locomotive is in the front position. Figure 6-20 shows the distribution of the 

localisation error when driving in the other direction and so the mean value of the gaussian fit is an 

estimation of the reference position of GNSS / IMU on the train when the control wagon is in the front 

position. The values are compared in Table 6-6. For both directions the reference position of GNSS / 
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IMU was estimated with a small error if you consider the resolution of about 8m for FOS. The precision, 

which is the width of the gaussian fit, also lies within the resolution of FOS. 

For the measurement train, the sum of the estimated antenna positions should result in the train length 

which is about 64.52m in this case. The real length of the measurement train is 66.5m. 

There are also some other parameters on which the results could depend: 

• The estimation of the time delay. Minimum value was 3.07s and maximum value was 4.27s. 

• The accuracy of GNSS / IMU as the reference. 

 

Figure 6-19 Distribution of the localisation error between GNSS / IMU and FOS for all drives with the locomotive in front 

position using the front position estimated by FOS. The mean value of the gaussian fit is an estimation of the GNSS / 

IMU antenna position. Their position is known to be 34.18m behind the front of the locomotive. 
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Figure 6-20 Distribution of the localisation error between GNSS / IMU and FOS for all drives with the control wagon in 

front position using the front position estimated by FOS. The mean value of the gaussian fit is an estimation of the GNSS 

/IMU antenna position. Their position is known to be 32.32m behind the front of the control wagon. 

Table 6-6 Results of the gaussian fit of the distribution of the difference between the position calculated with GNSS / IMU 

and the position calculated with FOS. The mean value is the estimated distance of the front of the train to the GNSS / 

IMU reference position on the train. The precision is the width of the distribution. 

Localistion error Real reference posi-
tion for GNSS 

Estimated reference 
position 

Precision of estima-
tion 

OT_H (Loco-
motive in front) 

34.18m 36.57m 7.73m 

OT_R (Control 
wagon in front) 

32.32m 27.95m 7.13m 

Train length 66.5m 64.52m - 

 

In Figure 6-21 the calculated speed of both sensors is compared for the drive OT_2H. The speed cal-

culated with FOS shows a little more variation, which is due to the resolution of FOS. 

The train could be tracked and measured down to a speed of 7 m/s (25km/h). 

The distribution of the speed error between FOS and GNSS/ IMU for drives with the locomotive in front 

is shown in Figure 6-22 and the other driving direction is shown in Figure 6-23. In Table 6-7 the results 

of the distribution for both drives are summarized. The distribution is zero mean with a good precision. 

 



  smartrail 4.0 LCS Localisation 

 

 

  Seite Page 132 of 168 

 

Figure 6-21 Train speed compared for GNSS / IMU and FOS for OT_2H drive with the measurement train. 

 

Figure 6-22 Distribution of the speed error between GNSS / IMU and FOS for the drives with the locomotive in the front 

position. 
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Figure 6-23 Distribution of the speed error between GNSS / IMU and FOS for the drives with the control wagon in the 

front position. 

Table 6-7 Results of the gaussian fit of the distribution of the difference between the speed calculated with GNSS / IMU 

and the speed calculated with FOS. For both direction it is a nearly zero mean distribution. The precision is the width of 

the distribution. 

Speed error Mean error Precision 

OT_H 0.12m/s 0.81m/s 

OT_R -0.10m/s 0.78m/s 

 

  

6.3.5 Comparison of Video, GNSS and FOS with Axle counters 

Another ground truth was provided in the form of axle counter data for 5 axle counters. These axle 

counters’ positions are accurately measured and also SIL 4 certified. 

Unfortunately, the clock sources of the axle counters are not synchronized. To estimate the time delay, 

a data set that covered 1 hour was used which contained 17 trains. For each axle counter the delay was 

estimated separately because they did not have the same clock. 

These time delays were used to evaluate the localisation error for the whole measurement data from 14 

June 2019 (about 6:55 hours). Figure 6-24 shows the distribution of the linear distance (localisation 

error) between FOS and axle counter positions separately for each axle counter due to the different 

clocks. The corresponding summary of the results, listing the percentage of evaluation points for differ-

ent error intervals, is shown in Table 6-8. The errors are significantly higher than in the GNSS / IMU 

comparison, indicating that these are not originating from the FOS measurements. Most likely, the larger 

errors are due to bad clock synchronization between FOS and the axle counters. 

Figure 6-25 shows the time difference between axle counter clock (reference) and the clocks of the 

other sensors for each axle counter. GNSS, GNSS / IMU, Visual Odometry as well as FOS all show the 
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same pattern for the time difference so it is assumed that there were some issues with the axle counter 

time. 

When looking at the section for axle counter ZP05211 in Figure 6-25 the time difference for both GNSS 

/ IMU and FOS varies from drive OT_1R to OT_4R for about 2.5s. With a speed of 40m/s this results in 

a maximum error of 100m and therefore the results in Figure 6-24 are comprehensible. The distribution 

of axle counter ZP05111 is not shown in Figure 6-24 because his position was outside the good part of 

the mapping between channel and real world coordinates, which means that the hammering started at 

channel 96 and the position of ZP05111 is at channel 70 and here the real world coordinated were just 

extrapolated and so the results are not meaningful. 

 

 

Figure 6-24 Distribution of the localisation error between FOS and axle counters. 

Table 6-8 Percentage distribution of the localisation error when comparing axle counter and FOS. Table corresponding 

to Figure 6-24. 

Localistion error < 5m 
% 

< 10m 
% 

< 15m 
% 

< 20m 
% 

Min 
m 

Max 
m 

ZP05211 4.69 17.19 17.19 31.25 0.86 99.64 

ZP20w3 3.51 22.81 22.81 29.83 1.56 108.04 

ZP92.21 15.79 31.58 33.33 42.11 2.33 89.91 

ZP93.21 12.5 21.88 25.00 31.25 2.38 111.43 
 

Figure 6-25 shows the differences in the clock of the systems. The axle counter clock is taken as a 

reference. It looks like all the sensors have different clocks but the interesting thing is that GNSS, GNSS 

/ IMU, Visual Odometry, and FOS all have a constant delay between each other for all drives. Only the 

distance to the axle counter clock varies. It seems like the clock changes with every drive, which means 

that the clock drifted with time. 
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Table 6-9: Time delay of the different sensor systems when passing the axle counter position. Reference time is the axle 

counter clock. Graphical representation of the table can be seen in Figure 6-25. 

Sensor Time (OT_1H) Time (OT_2H) Time (OT_3H) Time (OT_4H) 

Axle Counter MS ZP05111 08:53:55 10:10:26 11:26:07 13:38:15 

Fiber Optic Sensing (FOS) +5.9 +3.0 +5.3 +4.0 

Visual Odometry (VO) +4.8 +3.9 +4.0 +3.3 

GNSS +3.9 +2.7 +3.1 +2.1 

GNSS + IMU +3.1 +2 +2.1 +1.1 

Axle Counter WCHZP20w3 08:55:33 10:13:23 11:28:25 13:40:58 

Fiber Optic Sensing (FOS) +4.9 +5.3 +3.8 +3.5 

Visual Odometry (VO) +3 +3.5 +2.4 +3.1 

GNSS +2.4 +2.4 +1.4 +1.4 

GNSS + IMU +1.6 +1.5 +0.5 +0.4 

Axle Counter WCH ZP92.21 08:55:47 10:13:38  11:28:39 13:41:37 

Fiber Optic Sensing (FOS) +4.8 +4.8 +4.0 +2.8 

Visual Odometry (VO) +3.7 +3.5 +2.9 +3.6 

GNSS +2.5 +2.3 +1.6 +1.5 

GNSS + IMU +1.7 +1.4 +0.8 +0.4 

Sensor Time (OT_1R) Time (OT_2R) Time (OT_3R) Time (OT_4R) 

Axle Counter WCH ZP93.21 09:16:34 10:33:37 12:00:50 14:18:39 

Fiber Optic Sensing (FOS) +5.2 +4.2 +4.1 +2.9 

Visual Odometry (VO) Not available Not available Not available Not available 

GNSS +2.6 +1.5 +1.4 +0.7 

GNSS + IMU +1.8 +0.7 +0.6 -0.2 

Axle Counter MS ZP05211 09:18:20  10:36:21 12:03:28 14:21:41 

Fiber Optic Sensing (FOS) +5.7 +4.2 +4.1 +3.3 

Visual Odometry (VO) Not available Not available Not available Not available 

GNSS +3.3 +2.4 +2.2 +0.8 

GNSS + IMU +2.5 +1.5 +1.2 -0.1 

 

 

Figure 6-25 Differences in the clocks of the used systems. The axle counter clock is taken as a reference. The figure is 

divided into blocks which correspond to the axle counter written on the top of each block. On the x-axis the drives are 

plotted. 
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6.4 Conclusion 

The comparison results of the different sensors/sensor systems show that the time synchronization (time 

stamps + latencies) is crucial for a multi sensor setup. The different sensor data has to be propagated 

to the same event time in order to be combined or compared (e.g. for voting the best sensor value). 

Techniques for the fusion of sensors with different sample properties are shown in [28]. 

6.4.1 Video 

Due to their low cost and compact size, camera systems are in use in many applications across domains 

(automotive, robotics, …). 

A simple system based on a mono camera with a 1280x1024 pixel resolution, operating at 60 Hz and 

pointing to the railway track, can collect data in real time and measure the train position with high accu-

racy. 

Applying our highly innovative autocalibration procedure, which is based on the identification of the 

railroad track in the image, no further prerequisites are necessary and easy mounting of the camera 

system on the train’s windscreen has been proved as well as a “plug-and-play” operation.  

Visual Odometry 

The relative motion of the train is measured by means of the so-called Visual Odometry. By comparing 

images between consecutive frames, the one-dimensional (1D) motion of the train can be determined.  

The absolute distance travelled is calculated and compared to other sensor technologies like GNSS / 

IMU and GTG. The trueness is found to be less than 0.6%, depending on the measurement run ana-

lysed. The systematic error of the distance travelled, which is measured by Visual Odometry, is 0.8%. 

Measuring by Visual Odometry the absolute distance travelled between consecutive couples of balises 

and comparing it to the distance stored in the database, which is considered as ground truth, the true-

ness is found to be less than 0.7%. 

Based on the measurement runs, the train speed was calculated with Visual Odometry and compared 

to the combined measurement from GNSS and IMU, considered as ground truth. The trueness is found 

to be less than 0.7 km/h with a precision from 0.6 to 1.0 km/h, depending on the measurement run 

analysed.  

The results are in accordance, within the given systematic uncertainty, between reference and meas-

ured data. 

Furthermore, the 3D position of the train has been calculated by Visual Odometry, too. As expected, 

such a method can be very precise on a short scale, but it suffers of systematic uncertainties that accu-

mulate over time causing a drift in the calculated position.  

Video Localisation 

Therefore, Visual Odometry is supported by Video Localisation in the calculation of the train absolute 

position. Indeed, the precision of the calculated train position is substantially improved by referring to 

infrastructure objects detected by the camera system, like point-frogs, that have a fixed and exactly 

known position. The gradually increasing drift is corrected every time the point-frogs are detected by the 

camera.  
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Thus, the 3D position of the train has been calculated and compared to GNSS / IMU measurements, 

considered as ground truth. The precision of the measurement with Video Localisation ranges from 21 

to 26 cm, depending on the measurement run analysed. 

In addition, or as an alternative to point-frogs, artificial landmarks like AprilTag can be used. All the 

AprilTags, located alongside the track, were successfully detected by a dedicated camera with a large 

focal length. According to the point-frogs, the fixed position of the AprilTags can be used to reset the 

drift of Visual Odometry. 

Options and Restrictions of the current Approach 

Currently, there are still some limitations of the camera systems in use, which are described in the 

following: 

• Poor illumination in long tunnels: With the current camera system, it is not possible neither to 

identify the railway track nor to measure the train position in long tunnels with poor illumination. 

Extensions to the current system are planned in order to deal with poor illumination. The near-

infrared illuminator can be replaced by one with higher power or it can be mounted outside, so 

that the light emitted will not be reflected by the windscreen. 

 

• Weather conditions: Several additional measurements have been analysed to validate different 

use cases under different conditions that could limit the performance of the algorithms. The per-

formance of the algorithms seems not to be affected by little snow on the railway track. The per-

formance in challenging weather conditions like heavy rain or fog have not been tested yet, 

since they didn’t show up in the measurement runs. New measurements shall be taken in order 

to evaluate the precision of the measured position in such weather conditions. 

 

• Processing time of the algorithms: Images were stored in real time, while the calculation of the 

train position has been performed offline with real time capable algorithms. It shall be noted, 

that the scope of this analysis was to exploit the full potential of Visual Odometry in the meas-

urement of the train position. A real time measurement of the train position is the final goal and 

can be reached in the next future by slightly tuning the parameters and the algorithms in use to 

fulfill the requirements of the train localisation. 

In spite of the excellent results achieved in this PoC, the accuracy of the train position, measured by 

Visual Odometry, still has some room for improvement. The following list shows options based on the 

current approach: 

• Fixed camera system: The accuracy of the train localisation can be simply improved by installing 

the camera system in a fixed position. A manual calibration with a calibration sheet (chessboard) 

would measure the camera initial pose as well as the absolute scale with higher precision than 

the automatic procedure based on the railway track identification. 

 

• Larger focal length for the detection of railway objects in the infrastructure: The camera and the 

objectives were selected in such a way, so that one camera could detect AprilTags alongside 

the track and the other camera could track features in the surroundings as well as identify the 

railroad track. Nevertheless, the very good results of correcting the train position, calculated 

with Visual Odometry, with the fixed position of the detected point-frogs, suggests the use of 

already existing objects identified in railway infrastructure as global reference. Therefore, a cam-

era with large focal length, combined with another camera with shorter focal length, both point-

ing to the railway track, is a very promising combination, since it would allow a good tracking of 

features in the surrounding as well as a detailed identification of objects within the railroad track. 
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• Camera: A camera with a higher resolution would increase the precision of the measurement 

of the train position. A camera able to collect color images could improve the identification of 

objects like balises. However, it shall be noted, that the number of pixels of the images affects 

the processing time. 

 

• SLAM (Simultaneous Localisation And Mapping) for drift compensation: Currently, point-frogs 

are used to reset the accumulated drift. In addition, artificial landmarks like AprilTags are de-

tected and can be used as well to reset the accumulated drift. The plan is to use a system that 

is able to map the position of objects like bridges, trees or buildings detected in previous runs. 

Then, the system shall also be able to re-identify those objects once they come into view after 

a train passes again, and use their position to compensate for the drift. 

Extent of use in railways 

The presented analysis reveals a huge potential for the Visual Odometry and Video Localisation as part 

of a future continuous, accurate and reliable train localisation.  

The main advantage of the Visual Odometry is the high precision in the short range. As explained in the 

report, the systematic uncertainty can be lowered by using a fixed camera mounted on the windscreen 

and the precision of the absolute distance is determined by the pixel size, that are smaller than 1 cm. 

The combination of the travelled distance measured by Visual Odometry with the global position meas-

ured by GNSS, seems to be a very promising approach. 

Regarding the determination of the 3D position of the train, the results presented show that a precision 

of about 20 cm can be reached by Video Localisation. The precision can be drastically improved by 

increasing the number of natural objects to compensate for the drift. By the introduction of SLAM algo-

rithms, the number of natural objects along the paths can be detected and their position used for drift 

compensation. Thus, it could be used standalone for absolute localisation for dedicated use cases.  

Furthermore, Video Localisation could be thought to generate Train Position Report (TPR) messages 

as an input for ETCS.  Currently, the TPR is generated from the last passed balise (group) and the 

travelled distance from there. As shown in the report, the distance between balises can be measured 

accurately by Visual Odometry. This leads to another approach to introduce virtual balises. A virtual 

balise could be a point-frog or an AprilTag and it could replace the current balise for the generation of 

the TPR. 

In addition to measuring the train position, images collected by a camera could give valuable information 

for other railway applications, and especially for infrastructure applications, e.g. for automatically detect-

ing stopping plates alongside the track or for track monitoring and updating of the existing data bases 

by ongoing measurement of the track width, curvature and other parameters.  

6.4.2 FOS 

Fiber optic sensing offers great potential as a supporting technology not only for train localisation but 

also for train length and integrity, among others. It provides absolute positions, train speed and train 

length in real time, which makes it unique compared to other technologies. In addition to locating trains, 

this sensor can also be used to detect rockslides, animals or people on tracks. In this document only 

the train localisation was covered. 

The analysis was architecturally divided into two parts. The first one is the intra channel analysis which 

is concerned with the processing of the signal coming from the interrogator unit (raw sampled vibration 

data) and the second is the inter channel analysis which receives the processed and thresholded data 

from the intra channel and models a moving train. We have used a simple thresholding model and only 
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one measure (ESF) for this report. A more complex model, with hysteresis thresholding coupled with 

both power and ESF for detecting silence and non-silence would produce better (less noisy) data for 

the inter channel analysis. The results, however, would still be dependent on the train speed and would 

produce results consistent with the data reported here. This doesn’t seem to be a problem because it 

was modelled in the inter channel algorithms. 

One usage for FOS would be as a fall-back option for train integrity determination. With our algorithms 

it was possible to recognize and track all trains in the given data compared to the train schedule we 

received. Also, two additional trains were recognized in the data from 14 June 2019. 

In order to be able to make a statement about the train integrity, the length of all these trains along the 

journey was calculated and compared with the true length from the provided train schedule. The error 

between calculated length and real length lies with an interval of +-20m for about 87% of all the data 

points. There are some outliers where the calculated lengths are quite different from the ones given in 

the schedule. This should be further investigated and errors in the schedule should not be discarded. 

The results regarding the use of FOS for train integrity determination are good but there is still a lot of 

things which can be improved to get even better results. 

To evaluate FOS and our algorithms for train localisation the idea is to compare the results achieved by 

FOS with already certified sensors to prove that the new localisation system has the same performance 

regarding quality and safety. As was shown in section 6.3 there was a huge problem with the synchro-

nisation of the clocks, especially for the evaluation with the axle counter. It was not possible to properly 

synchronise the clocks between FOS and the Axle counters. This presented a negative impact on the 

comparison and fixing this would definitely improve the results, i.e., the results reported are definitely 

worse due to the time discrepancy. In fact, the lack of a “master clock” for all sensors has proved to be 

a challenge in order to actually evaluate their relative accuracy and is a high priority for sensor fusion. 

Also, further measurement drives should take the various clock sources into consideration and target 

their synchronization. At the very minimum, each clock source should supply a confidence interval for 

its values in relation to a universal clock source. 

However, comparisons with GNSS / IMU showed very promising results as it was possible to estimate 

the time difference of the clocks. The localisation error between GNSS / IMU and FOS can be interpreted 

as the estimation of the reference position of GNSS / IMU on the measurement train. For drives from 

Münsingen to Uttigen the locomotive was in front position and the estimated mean value for the refer-

ence position of GNSS / IMU was 36.57m with a precision of 7.73m. The real value of the position 

according to the train data is 34.18m. The difference to the estimated value is good when considering 

the 8m resolution of FOS. 

For drives from Uttigen to Münsingen the control wagon was in front position and the reference position 

of GNSS / IMU is therefore 32.32m behind the front end. The estimated mean value was 27.95m with a 

precision of 7.13m. Again, the difference between real value and estimated value is within the resolution 

of FOS. The sum of both estimations is 64.52m and is an estimation of the train length, which is 66.5m. 

Great results were achieved with FOS and the algorithms we implemented therefore when comparing 

to the point where we started. In the last month of the project great improvements were made in the 

used algorithms and models. But there is still a lot what can be done to get even better results. 

There are some different models which can be tried for the tracking in the Inter Channel Analysis and 

also the signal filtering in the Intra Channel Analysis could be improved by analysing more data. We 

have a firm conviction that better results can be achieved especially in the area of train length determi-

nation. For most of the trains tracked, the length was measured with a high degree of accuracy over the 

entire measuring section. Some trains, however, presented a large discrepancy in relation to their 

lengths given in the schedule. These require additional investigation to find out the real cause of these 

discrepancies.  
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7 SBB innovation project - Optical Train Localisation 

7.1 Introduction 

Generally, computer vision algorithms can be grouped in two different categories, classical algorithms 

and machine learning based algorithms. The optical approach for exact train localisation presented in 

Chapter 3 is based purely on classical computer vision algorithms, such as edge and line detection. 

The main reason is, that the process to reach a SIL4 certification, as required for train localisation, is 

currently not well established for machine learning based approaches. However, deep-learning algo-

rithms, especially based on convolutional neural networks (CNNs), have led to a huge improvement in 

many computer vision areas, such as object detection and distance estimation. Further, machine learn-

ing based algorithms are already essential in the self-driving car industry and for selected cases, safety 

certification has already been approved. 

In the following proof of concept (PoC), we investigate a deep learning based optical approach for exact 

train localisation. In the first iteration, we investigate the following use cases: 

• Optical detection and recognition of tracks and selection of driven on track 

• Optical detection of further objects of interest along the tracks 

• Influence of lighting and weather conditions on the optical detection 

Here we find, that the track selective lateral position of the train can be determined with a very high 

accuracy. For this we first detect all tracks in a frame a camera mounted at the front of the train. Note, 

that for most lighting and weather conditions the detection precision and recall are well above 90%. 

However, we note that during night or at low visibility, the detection precision drops below 70%. In gen-

eral, the presented optical approach only works, if all adjacent tracks are visible in the front camera. We 

note, that the track detection can be impaired due to multiple reasons.  

• Lighting and weather conditions (e.g. night or fog). 

• Limited camera resolution or horizontal field of view (FoV). e.g. camera does not capture all 
adjacent tracks) 

• Obstructed tracks. e.g. at train station entrances or for track covered by soundproof walls 
 
Further, we find that optical detection of other object is also possible. However, sufficient training data 

is needed for a reliable detection. 

In the second iteration, we investigate the following use cases: 

• Integration of topology Database (DfA) with optical track selection to obtain a track specific lo-

calisation.  

• Investigation of the robustness of the optical detection with respect to further lighting and 

weather conditions as well as for further routes. 

Here we find that using a course GNSS signal it is possible to merge information from the DfA and the 

optical track selection to obtain a track specific train localisation. However, ‘matching’ is only possible if 

the optical detection of the tracks is complete, as in the event that optical detection and topology data 

do not match, the observation is discarded. Here, matching depends very much on the quality of the 

image acquisition (resolution, field of view, sensor noise, …). For this reason, the current algorithm only 

works on sections where all tracks are visible, and less than 5-6 tracks are present. Therefore, the 

developed algorithm currently only evaluates tracks outside station entrances and does not evaluate if 

track edges run over switches. 
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In the third iteration, we investigate the following use cases: 

• Optical detection and recognition of mast boards to determine the longitudinal position of the 

train 

• Optical detection and recognition of kilometer panels to determine the longitudinal position of 

the train 

• Optical detection of switch state and expected driveway of the train 

Here we find, that the alignment of the mast boards along the tracks leads to a poor recognition rate. 

We note, that this recognition rate can be improved by using a side-camera (45 or 90 relative to the 

direction of travel) together with image pre-processing algorithms. However, we observe a very good 

recognition rate for the kilometer panels (79.47 %). Further, we demonstrate that on a test route from 

Thun to Ostermundigen the optical kilometer panel detection, together with the optical track selection 

and the DfA integration, can be used without GNSS for full train localisation. Note, that the test route is 

approximately 20.4 km long and of the 204 kilometer boards 151 are fully captured in the camera im-

ages. On this test route we successfully detect 120 kilometer boards (79.47 %) and identify 91 track 

sections. This corresponds to a detected kilometer board every 170 m. However, around stations we 

observe longer non-recognized distances (up to 1.1 km) and consequently also shorter non-recognized 

distances for overland sections. Further, we present possible approaches to determine the longitudinal 

position more precisely using the kilometer panels. However, further data is needed to refine and eval-

uate these approaches. 

For the optical detection of the switch state and expected driveway, we find that semantic segmentation 

can be used to select only the expected driveway, even when moving over switch sections. However, 

we note that the algorithm was only tested on a limited set of examples and has to be trained and tested 

using additional data. 

In conclusion, we show that an optical train localisation at different lighting and weather conditions is 

possible, without the use of additional external infrastructure. Further, the optical approach demon-

strated in chapter 7, does not exhibit scale drift and does not depend on an external signal. However, 

we note that the approach relies on the visibility of all adjacent tracks and kilometer panels. Here, the 

occlusion of tracks or masts as well as extreme lighting and weather conditions can lead to a failure of 

the described approach. This has to be especially considered for tracks around station entrances and 

at conditions with poor visibility, such as at night or in a tunnel. However, a different camera setup (night 

vision camera, wider FoV, different camera alignment, …) and additional infrastructure (e.g. additional 

tags at ambiguous sections) could quickly lead to a significant improvement. In general, more data is 

needed to refine and further evaluate the optical train localisation approach described in chapter 7. 

The investigated PoC in chapter 7 is structured as follows. In chapter 7.2 we describe the setup of the 

employed camera system. In chapter 7.3 we present the 1st iteration of the developed optical localisa-

tion. In Iteration 1, we develop and evaluate a deep-learning based algorithm to detect train tracks and 

to select the used track in an image taken out of the front of the train (train driver perspective). Further, 

the performance of the track selection algorithm is tested for various environmental conditions, such as 

snow, fog and rain. Note that, the performance testing was also partially done in Iteration 2 but is dis-

cussed here for consistency. In chapter 7.4 we present and evaluate the 2nd iteration of the developed 

optical localisation. In Iteration 2, we use a course GNSS signal to estimate the longitudinal position of 

the train along the tracks. This positional estimate is used to extract the current track layout from the 

DfA. The track layout is then merged with the optical track selection algorithm to obtain a track precise 

lateral position of the train. In chapter 7.5 we present and evaluate the 3rd iteration of the developed 

optical localisation. In Iteration 3, we replace the course GNSS signal, used in Iteration 2 for the longi-

tudinal position estimation, with an optical longitudinal localisation approach. Therefore, we develop a 

deep-learning based algorithm to detect and identify the km-sign posts along the tracks. This is done 

using a 2nd camera facing 45° degree relative to the direction of travel. The identified km-sign is then 

matched with the DfA to obtain the longitudinal position of the train. Note, that the km-sign posts appear 
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regularly and frequently along the tracks and that their position is already precisely documented in the 

DfA. Hence, the described optical localisation does not require additional external installations. Finally, 

we combine the lateral and longitudinal positioning approaches to obtain a stand-alone optical train 

localisation method. In chapter 7.6 we discuss future building blocks and tasks required prior to the 

deployment of the presented optical localisation. Chapter 7.7 summarizes the results and our conclu-

sions. 

7.2 Camera Setup 

The developed optical localisation approach is based on dual camera setup mounted at the front of the 

train. The first camera, denoted as FRONT, points along the direction of travel and is used for the track 

selection. The second camera, denoted as TAG, points 45° degree relative to the direction of travel and 

is used for the km-sign detection and identification. The technical details of the used Speedgoat/M2C 

camera are described in chapter 3.2.3 and the calibration parameters of the cameras are described in 

chapter 3.2.5. Note, that the approach also depends on access to an updated version of the DfA. How-

ever, the DfA, or the relevant section, can be stored locally in the OBU and doesn’t require a permanent 

external connection.  

7.3 Iteration 1 

The goal of the first iteration of the presented Proof of Concept (PoC), which started in April 2018, was 

to answer the following fundamental questions. 

• Can tracks be recognized and a track-selective position determined by capturing camera im-
ages and processing them by artificial intelligence or computer vision algorithms? 

• Under what lighting and environmental conditions does the process work? 

• Can qualitative and quantitative statements about the determination accuracy be made? 

• What are the limits of the proposed approach? 
 

In addition to the key questions about track selectivity, we also investigated the extent to which other 

road elements, that could possibly be used to determine the longitudinal train position, for example 

track-signals and balises, can be recognized by neural networks. 

7.3.1 Track selective localisation 

The basic idea of image-based track-selective localisation is to train a neural network to recognize all 

tracks in an image (see Figure 7-1). Next, the detected track layout is matched to the DfA to determine 

the track selective train position. Thus, in a first step we investigated whether it is possible to detect 

tracks with a high accuracy using an object detector based on the shape and extent of the tracks. 
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Figure 7-1. Example image of tracks detected using an object-based detector. 

7.3.2 Image source 

Currently there are already a number of different approaches in the literature to perform object detection 

in images. At the start of the PoC, the most widespread network architecture was the Region based 

Convolutional Neural Networks framework (R-CNN) as well as improvements derived from it, such as 

the Fast R-CNN. The R-CNN family of techniques primarily uses sub-regions in the image to localize 

the objects. This means that the network does not look at the entire image but only at the sections of 

the images which have a higher chance of containing an object. 

In contrast, the YOLO framework (You Only Look Once), deals with object detection in a different way. 

The YOLO network takes the entire image in a single instance and directly predicts the bounding box 

coordinates and class probabilities for these boxes. Further, the image is scaled three times to improve 

the detection of small objects. This approach also explains the high number of network layers (see  

Figure 7-2) in the YOLO network architecture. The biggest advantage of using YOLO is its detection 

speed – it is incredibly fast compared to other CNNs and can process 45 frames per second on standard 

hardware. Additionally, it is one of the best algorithms for object detection and has shown a performance 

comparable to the R-CNN algorithms (see Figure 7-3).  

For these reasons we chose the YOLO framework for the initial Iteration of the presented PoC.  

However, note that further network architectures with similar or slightly better precision and with accel-

erated inferencing have also been developed and are continuously being developed. If the PoC is con-

tinued, we advise to reinvestigate the choice of the object-based track detector. 

 

 

 Figure 7-2. Schematic representation of the YOLO framework architecture. 
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Figure 7-3. Mean average precision (mAP-50, higher is better) shown against the inference time (ms) for different 

CNN architectures (YOLO framework and different R-CNN frameworks). The mAP-50 is calculated on the COCO 

object detection dataset from Microsoft.  

7.3.3 Image pre-processing 

No explicit steps for image pre-processing were required for the training. We deliberately used the image 

material in different native qualities and resolutions. 

Additionally, YOLO has several internal image augmentation algorithms that can be randomly applied 

to the images during training. This includes ‘angle’ for the rotation of the image, ‘saturation’ for changing 

the color saturation, ‘exposure’ for adjusting the brightness and ‘hue’ for changing the hue. 

Due to extensive augmentation, the data set for training can be massively expanded and usually leads 

to a better generalizable more accurate trained neural network. 

7.3.4 Labeling of tracks, signals and other objects 

Prior to training and evaluation, all used image data has to be correctly labeled in order to generate the 

ground truth, against which the accuracy of the network prediction is measured. This means, that in 

every image the position and the class of all the objects, which should be detected, have to recorded.  

For this purpose, we have labeled training and evaluation data extracted from the DFZ at different light-

ing and environmental conditions. For the actual labeling, we used the Python based open source tool 

‘labelImg’. However, we adapted and expanded this to support and accelerate the labeling (see Figure 

7-4). 
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Figure 7-4. Adapted interface of the Python based open source tool ‘labelImg’. The left image shows an ex-

ample image extracted from the DFZ. The two images on the right show zoomed in sections of the main image, 

showing a detected person and “Zwergsignal”, in order to draw the object bounding boxes more precise.  

 

Ideally, the YOLO framework should be trained with at least 2000 labels per object class. In view of the 

high effort involved in labeling and the high recognition rate achieved, we have temporarily used a lower 

number of labels for some of the object classes. 

In total, we labeled training and evaluation data from 2520 images with 6 classes, resulting in 7917 

labels in total and with a strong focus on the class ‘track’ (see Table 7-1). 

 

Table 7-1. Object classes and number of labels per class in the generated training and evaluation data. 

Class # Labels 

Balise 646 

Person 157 

Km 394 

Signal 740 

Track 5487 

Zwerg 493 

Total 7917 

 

7.3.5 Training 

The generated dataset was split as follows; 80% of the labeled data was used for training and 20% for 

validation. Training was carried out on a Nvidia DGX-1 system, which is equipped with 8 GPU’s. How-

ever, only 4 GPU’s were used for the training, as this is a limitation of the network implementation used 

with YOLO. Note, that there are pre-trained YOLO networks available based on the COCO dataset from 

Microsoft. However, we did not use transfer learning during training and instead trained the network 

from scratch.   

The training took place in two steps. In the first step, 1000 batches are carried out on a single GPU for 

initialization. Only in a second step, the network is then trained on several (up to 4) GPU’s. During 

training, we observed GPU loads of up to 300 watts per GPU. By using 4 GPUs instead of one, the 

training time was reduced from 5 days to 1 day. 
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The development of the values for true positive (TP), false positive (FP) and false negative (FN) detec-

tions during training turned out as expected (see Figure 7-5). 

 

  

Figure 7-5. Development of the values for TP (purple), FP (green) and FN (blue) detections during training. As 

expected, the TP detections increase, and the FP and FN detection decrease towards a limit during the training 

process. 

7.3.6 Validation 

In order to validate the trained network, we used the 20% validation images together with the labeled 

“Ground Truth” for the tracks. For these images we defined and marked which tracks are visually rec-

ognizable (see Figure 7-6). For each image in the validation set the detected tracks were then compared 

with the marked tracks of the “Ground Truth” to calculate the precision and accuracy. Images were only 

counted as true positive (TP), if all tracks in the image were fully recognized. 

 

 

Figure 7-6. Example of validated image containing detected tracks (top) and “Ground Truth” labels (bottom) for 

visible tracks. The example shows a false positive (FP) detection (left box), where a side-rail is erroneously de-

tected as track. 
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Table 7-2 shows the results grouped according to the different investigated lighting and environmental 

conditions.  For the performance of the track detection algorithm we calculate the number of TP (correct 

detection) the number of FP (wrong detection), the number of FN (object not detected), the accuracy 

(
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
, the fraction of correctly detected objects), the precision (

𝑇𝑃

𝑇𝑃+𝐹𝑃
, the ratio of correctly detected 

objects over all detected objects) and the recall (
𝑇𝑃

𝑇𝑃+𝐹𝑁
, the fraction of correctly detected objects over all 

objects that should have been detected). Generally, a high recall means that most of the objects are 

detected, whereas a high precision means that most objects are detected correctly. Further, we also 

show the F1 score, which is the harmonic mean of the precision and the recall.  

In general, for all lightings and environmental conditions, except during night, we achieve a precision 

and a recall above 90%. However, note that for some of the conditions the precision is higher than the 

recall. This means, that the algorithm sometimes misses the tracks but if a track is visible, then the 

algorithm can detect it with a high accuracy. Further, the somewhat poorer performance at night, recog-

nizable by the higher number of false positive detections, is due to, among other things, the strong color 

noise of the camera. Better results can certainly be achieved here by using more sensitive cameras or 

using infrared (IR) cameras, possibly together with IR headlights.  

In summary, it is particularly interesting here, that in addition to the optimal conditions during the day 

and with sunshine, the tracks can also be recognized at night and in fog or even while covered with 

snow (see Figure 7-7 and Table 7-2). 

 

Table 7-2. Evaluation results of the track detection algorithm for different lighting and environmental conditions. 

The rows “two-lane track” and “chiasso” are representative for track detection during good weather conditions.  

Dataset TP FP FN Accuracy Precision Recall F1 

tunnel 714 9 59 0.98 0.98 0.92 0.95 

two-lane 
track 

320 1 35 0.98 0.99 0.90 0.94 

fog 5108 88 49 0.99 0.98 0.99 0.98 

snow 2661 44 226 0.98 0.98 0.92 0.95 

night 5313 2300 278 0.95 0.69 0.95 0.80 

dusk 3869 29 243 0.99 0.99 0.94 0.96 

chaisso 794 12 60 0.98 0.98 0.92 0.95 
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Figure 7-7. Examples of track detection at different lightings and environmental conditions (from top left to bottom 

right: snow, cloudy, tunnel, dusk, fog and night).  

 

7.3.7 Development of GUI for demonstration 

For the first iteration we additionally developed a simple graphical user interface (GUI) to demonstrate 

the results to the stake holders. Since we expect high performance requirements and, on the other hand, 

wanted to keep the technical effort within limits, we did not develop the GUI with web technologies but 

instead based on Python and Qt. Qt is a graphic framework that is written in C++ and delivers an out-

standing performance via a 'signal' based event system. There exists also a stable and tested Qt lan-

guage binding for Python. Nevertheless, the effort for developing a GUI is considerable. Especially when 

high demands are placed on the performance.  

With the future development of the presented PoC in mind, the goal is, that the GUI should be able to 

handle two video channels with 60 frames per second each. In the first iteration, we were able to achieve 

a processing speed of approximately 35 FPS for one video channel. This is mainly due to the large 

number of layers in the YOLO v3 network. Note, that further optimisations and adjustments are neces-

sary here and will be discussed in the following iterations.  
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7.4 Iteration 2 

7.4.1 DfA Topology database 

In the first iteration of the presented PoC, we showed that it is possible to use optical methods to rec-

ognize tracks, even under difficult light and weather conditions. However, recognizing the tracks and 

the siding alone is not enough to determine a position. Thus, in the continuation of the PoC, in the sec-

ond iteration, we investigate to what extent the optically obtained information can be used for a posi-

tion determination. The first step is to clearly determine the specific track, i.e. the track on which the 

train is traveling. 

 

The key to this is the derivation of the data from the SBB topology database “DfA, database of fixed 

systems (Datenbank der festen Anlagen)”. 

• The DfA is based on the national coordinate system LV95 with the axes E-East and N-North 
with seven-digit coordinates (Bern = 2,600,000 / 1,200,000). 

• It consists of a track and route network 

• The track network is a directed graph whose nodes are called "Turnout points” (Weichen-
punkt) and the edges are called the "Track lines” (Gleisstrang). A switch point always belongs 
to a switch and a track is always connected to a turnout point. 

• The length development in meters is defined as a metric on each track. It has the value 0 at 
the start point and “Track length” at the end point. 

• The length development is calculated and mapped as “Track points” at fixed intervals (10m) 
and stored in the DfA database. 

• All objects and derived points are georeferenced. 
 

Access to the DfA, which takes place via standard SQL, is very complex in terms of queries, since in 

addition to the existing system, configured and dismantled systems are also saved. For this reason, we 

initially loaded, preprocessed and stored the data required for our purposes in a separate data format. 

This makes it possible to completely load the topology relevant for the PoC into the memory. Due to this 

approach, the access latency to objects is considerably shorter (see Table 7-3). 

Table 7-3. Used DfA objects with corresponding load time in seconds. 

Object Items Load Time s. Description 

tile2Object 117291 0.52 Maps objects to tile 

Gleisstrang_gleispunkt 
70084 

0.19 Maps Gleispunkte for a given 
gleisstrang 

strecke 3013 0.01 Operation lines 

betriebspunkt 3330 0.01 Operation points 

weiche 28069 0.23 Switchers 

weichenpunkt 77414 0.28 Switch points 

gleisstrang 74925 0.24 Track lines 

gleispunkt 1103114 14.25 Track points 

streckenpunkt 464126 3.98 Operation point 

mast 152748 3.43 References to the poles 

 

In order to localize objects in the DfA, a geo-position is necessary. Currently (in iteration 2) This is not 

available for purely optical processes. We therefore use the geo positions of the DFZ test drives that 

are available as meta-data of the images in this phase of development. From these geo positions, we 

can derive an approximate position of the train. For this purpose, we convert the geo position to a tile 

position. The conversion is based on the algorithms of the “OpenStreetMap” open source project 

[https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames#Python]. This also enables us to use the 

OpenStreetMap tiles for map visualization. 

https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames#Python
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To map the objects, the geocoordinates of the DfA objects “Track-lines” and “Track points” are con-

nected in a first step and the tile coordinates are determined (see Table 7-4).  

 

Table 7-4. Extracted and calculated DfA objects for a determined coordinate tile. 

Object Attributes Calculated 

Gleisstrang 
‘Track line’ 

id 
 id_weichenpunkt_beginn 
 id_weichenpunkt_ende 
 id_gleisstrangart 
 gleisstrang_bezeichnung 
 laenge 
... 

  

Gleispunkt 
‘Track point’ 

Id 
 id_gleisstrang 
 id_strecke 
 y, x, z 
stationierung 
... 

All track points for 
each track string in a 
determined coordinate 
tile are calculated.  

 

7.4.2 Topology matching process 

The process to compare and match the optical observations with the DfA topology data takes place in 

3 steps:  

A. 

1. An image of the front camera is analyzed by the YOLO network. Detected tracks are deter-
mined by a bounding box with their position and size. 

2. The horizontal arrangement of the tracks is determined using the x and y coordinates of the 
bounding boxes. 

3. Since the camera has a fixed attachment point, the track on which the train is running is there-
fore determined constantly. Further, the positions of the bounding boxes on the x-axis are 
used to determine whether a track is to the left or right of the current lane. 

4. By evaluating all track detections, a "track trace pattern" can now be created. In the example 
shown in Figure 7-8, the extracted “trac trace pattern” is given as ‘111’. 

B. 

1. The tile coordinates are determined on the basis of a course GNSS signal of the train. 
2. The connections from track point to track point of the tracks that are in the tile coordinate are 

calculated and drawn on the map (green lines Figure 7-8 B). 
3. The direction of travel of the train is determined on the basis of previous positions. 
4. A straight line is now placed perpendicular to the direction of travel (red line Figure 7-8 B). 
5. The intersections of the straight lines between the track points and the straight line perpendic-

ular to the direction of travel are determined. 
6. The track trace pattern of the intersection points, in the example ‘111’, which result from the 

DfA topology is determined. 
C. 

1. A matcher algorithm now receives the track trace patterns determined by steps A. and B. and 
determines a possible match. 

2. If the patterns match, the position of the tracks on the left and / or right is determined based 
on the direction of travel. Otherwise, no position is determined for the current frame.  

3. It is determined on which track, e.g. Left / Right / Middle etc., the train is running. 
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4. With the track determined, the specific track section can now be determined in the topology. In 
the example «154512 - FMUE 16.1 - GTS 21.1» 

 

 

Figure 7-8. Example for topology matching process to determine the track selective train position. (A) From the 

image of the front camera the visible tracks are detected (green boxes) using the YOLO network and the track 

trace pattern (111) is determined. (B) The connection between the track points within the determined coordinate 

tile are calculated and drawn on the map (green lines). Then, using a line perpendicular to the direction of travel 

(red line), the DfA track trace pattern (111) is determined. (C) Finally, the matcher algorithm compares the two 

tracks trace patterns and determines the track selective train position. 

 

Note that, ‘matching’ is only possible if the optical detection of the tracks is complete. This depends very 

much on the quality of the image acquisition. The resolution, horizontal opening angle of the optics, 

sensor noise etc. have a strong influence on the complete track detection. In the event that optical 

detection and topology data do not match, the observation is discarded. This usually occurs on multi-

lane lines (> 5-6 tracks), tracks covered by soundproof walls or in train station entrances. Currently, the 

developed algorithm only evaluates tracks outside station entrances and does not evaluate if track 

edges run over switches. 

We also note that, the internal data structures used in the presented PoC map the topology via python 

dictionaries and lists for efficient access. The geometric calculations for determining the intersection 

point are carried out via Qt and are implemented with high performance in C++. Code profiling shows 

that the majority of the time is used for object detection by YOLO. Thus, the matching does not have a 

measurable influence on the achievable frame rate. 
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7.5 Iteration 3 

In the two previous iterations we described an approach to optically assign the lateral train position to a 

specific track. However, the approach still depends on GNSS to determine the longitudinal position, i.e. 

to extract the correct geo-position tile from the DfA. In the third iteration, we investigate the possibility to 

detect and recognize the kilometer and mast panels that are attached along the tracks, in order to de-

termine the corresponding geo-position tile in the DfA. This would make the optical approach fully inde-

pendent of a GNSS signal. 

The kilometer panels are usually attached to the catenary masts, but can also be placed on the side of 

the floor or on walls etc. The panels attached to the masts represent a very precisely measured refer-

ence point, since the bases of the masts often serve as a reference for measurements during construc-

tion work. In the DfA topology database, practically all masts have georeferenced information. They are 

usually spaced at a distance of approximately 50 m and kilometer panels are attached to every 2nd mast. 

Thus, we have a fixed reference point every 100 m.  

AprilTags are another alternative for recognizing a mast with a “QR code”. AprilTags can be read using 

classic computer vision methods and are thus recognized very robustly. A fundamental disadvantage 

is, that the tags would have to be attached to the entire route network, whereas the kilometer panels are 

already installed. The combination of both methods, kilometer panels on the tracks and AprilTags in 

train station entrances, possibly also for the track selective localisation, may be a useful addition. 

7.5.1 Detection and recognition of kilometer panels 

We re-trained the YOLO network used for the track detection (see Chapter 7.2) to additionally detect 

the kilometer panels from the front camera image. After the kilometer panels are detected, the recog-

nized area is cropped from the unscaled image and passed on to another network for optical character 

recognition (OCR) analysis. 

In our first experiments, we evaluated pre-trained networks, which were trained with data from the 

“Google Street View House Numbers SVHN” dataset. However, there was an insufficient recognition 

rate for digits on the kilometer and mast boards. House numbers are apparently too different. Therefore, 

we created our own training data set from the DFZ images and trained them with a 2nd YOLO network. 

Table 7-5 denotes the different training classes and the number of instances in the DFZ training data 

set.  

 

Table 7-5. Classes used for OCR analysis and the digits of instances in the DFZ training data set. 

Class # Labels 

0 401 

1 424 

2 437 

3 333 

4 362 

5 318 

6 355 

7 356 

8 410 

9 545 
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7.5.2 Training data 

Extensive images were created as part of several test drives in June 2019 on the route from Thun to 

Ostermundingen. The image data required for our purposes were captured by a front camera and a side 

camera set up at a 45° angle. The images were captured in grayscale with 10-bit depth and 60 FPS. 

For training and inferencing, we have converted the image depth from 10 to 8 bits. 

7.5.3 Km Boards 

In order to recognize the full kilometer panel based on the individual digits, we developed an algorithm 

that brings the recognized digits of a board into a semantic context. This is done based on the bounding 

box positions and areas of the detected digits. Here, the kilometer panels have a fixed format. The 

kilometer is in the first line. In the second line are the hectometers, followed by the meters in a smaller 

font (see Figure 7-9). 

     

Figure 7-9. (left) Image from a side camera pointing 45° relative to the direction of travel. The image shows a geo-

referenced mast with a detected kilometer panel (red box) and a detected mast board (purple box). (right) Detected 

kilometer panel used for OCR analysis. The yellow boxes show the detected digits. 

To evaluate the detection accuracy, we created a tool that can generate the “Ground Truth” for the 

kilometer panels, so that recognition rate per kilometer panel can be measured (see chapter 7.5.8).  

 

Note, that there are various possibilities to make the algorithm more robust. For example, the ratio be-

tween the area of the whole kilometer panel and the area occupied by the detected digit can be used to 

determine whether all digits have been detected. If this is not the case, the choice of the YOLO archi-

tecture has to be re-investigated, as small digits might not be optimally recognized. Additionally, the use 

of classic computer vision algorithms is also conceivable. Further, the detection could be made more 

robust by combining several subsequent detections and by shifting the image section in the x and y 

direction to match the corresponding digits. 

7.5.4 Catenary mast boards 

In addition to the detection of kilometer panels, we also investigated if mast boards can be recognized 

(see Figure 7-9). As a rule, these are attached to the masts lengthways, or laterally in newer sections 

of the route. During the test drive in June 2019, additional pictures were taken with a camera oriented 

perpendicular to the direction of travel. 

During the analysis, we were able to gather the following insights: 

• The narrow surface of the mast sometimes results in extreme image contrasts during the im-
age capturing, so that the image can only be made visible by applying extensive image cor-
rections, e.g. Gamma correction, brightness, masked histogram and more (see Figure 7-10). 
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Figure 7-10. Example image from mast with extreme image contrast (left). Effect of gamma correction on 

example image (middle). Effect of brightness and masked histograms on image gamma corrected im-

age(right). 

• There is a possible strong motion blur depending on the speed. This is particularly pro-
nounced in the case of boards that were recorded from a shorter distance. We tried to reduce 
the motion blur with “Wiener Deconvolution”, which was partly possible. However, in order for 
this algorithm to deliver optimal results, information about viewing angle and speed is re-
quired. This can only be achieved by great effort with more sensor data like IMU and odome-
try. 

 

Figure 7-11. Example image of mast board with motion blurr (left) and after the application of a Wiener De-

convolution filter (right). 

• With the side camera aligned at 45°, the mast panels can be read much better , although 
there is still the problem of the motion blur at higher speeds. 

 

7.5.5 DfA Topology database 

In addition to the objects «Track line» and «Track point» used in iteration 1, the DfA also contains objects 

that enable the a «Route» concept. There is also data for the assignment of masts, which are geo-

referenced, along the route. 

• The route network is a directed graph. The nodes are called "Betriebspunkt Kilometrierung - 
operating point mileage", the edges are called "Strecke - route". 

• Track routes that are on the same ballast bed are combined into one route. 

• Route points are generated as 10 meter points, analogous to the track points on the track 
axis, and saved in the DfA. 

• Each route has a start and end kilometer. 

7.5.6 Position determination 
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In order to be able to assign kilometer information to the masts of a route, we have created a graph in 

which the nodes correspond to the kilometers and the edges to the routes. If a board is now visually 

recognized, the nodes of the kilometers and the edges with the routes are read in the graph. If there is 

only one edge, then the route has been found and the mast from the DfA has been read over the kilo-

meters. 

The position of the train can then be determined via the geo-reference of the mast and the lateral track 

position. This is possible because distance information from the middle of the track to the outside of the 

track bed is recorded for each track. Since the sizes of the plates and the number height as well as the 

parameters of the camera used are known, it is possible to improve the distance measurement even 

further with classic computer vision methods. 

If there are several edges, i.e. several routes, we try, if a position has already been determined, to 

exclude the lines that are at a distance >1000 meters from the last position. If there is only one route 

left, the route has been found. 

If there are no previous position determinations, we have to wait for the next Km table and make a new 

determination. As a rule, the mileage of the routes after a certain number of positions gives a clear 

profile. In the event that this is not possible, i.e. the routes do not differ at all, this uniqueness can be 

restored by attaching an additional kilometer board to one of the next masts. 

When comparing the mileage on the board and the information stored in the Dfa, it is noticeable that 

there are some boards where the values do not match. We solved this problem with a mapping table, in 

which the kilometer information can be corrected manually. 

With the procedure described here it is possible to get a position even without GNNS. 

7.5.7 GUI 

In order to be able to visualize the results of the methods described above, we have expanded the GUI 

from the first iteration. The video channels of the front and side cameras can now be displayed synchro-

nized. The optical detection of the tracks and boards, the determination of the mileage of the boards 

and the algorithm for route detection run in real time (see Figure 7-12).   
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Figure 7-12. GUI of combined optical localisation approach up to the third iteration. The top right image shows a 

frame of the front camera with the detected tracks (green and yellow boxes). Above, the extracted track trace pat-

tern is shown. The middle image shows the corresponding frame of the side camera (45°) of the mast and the 

detected kilometer panel (red box) and mast board (purple box). The detected kilometer panels are then used for 

OCR analysis (bottom left image). The yellow boxes show the detected digits.  Finally, the extracted optical infor-

mation is matched with the DfA data-base (bottom right) to extract the current position (top panel). 

7.5.8 Analysis of the test data 

As part of various test drives, images were recorded with the front, side and rear cameras in June 2019. 

For our analysis we used pictures of the trip “Ctrl_3R_Thun_Ostermundingen_video”. In Figure 7-13 

the map on the left shows the recognized kilometer boards along the route, the one on the right shows 

the track sections on which the train was traveling. Note, that at beginning of the trip a number of KM 

boards are needed first, until an initial position can be determined. Also note, that only the images, 

without any GNSS, were used to determine the train position. 

   

Figure 7-13. Analysis of recognized kilometer boards. (left) Recognized kilometer-boards along the route. (right) 

Traveled track sections extracted from the DfA (ground truth). 

Table 7-6 shows the kilometer boards and track sections that have been recognized along the entire 

route. 
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Table 7-6. Recognized kilometer boards (blue) and track sections (black) along the route “Ctrl_3R_Thun_Oster-

mundingen_video” for the different route sections (purple).  

1 UTI Uttigen - THAB Thun Abzw. (4055) 
  133.961 
  133.845 
  133.741 
  133.636 
  133.536  TH 116.2 - UTI 7.2 (298522) 
  133.420  TH 116.2 - UTI 7.2 
  133.305  TH 116.2 - UTI 7.2 
  133.189  TH 116.2 - UTI 7.2 
  133.073  TH 116.2 - UTI 7.2 
  132.957  TH 116.2 - UTI 7.2 
  132.841  TH 116.2 - UTI 7.2 
  132.725  TH 116.2 - UTI 7.2 
  132.435  TH 116.2 - UTI 7.2 
  132.319  TH 116.2 - UTI 7.2 
  132.203  TH 116.2 - UTI 7.2 
  132.087  TH 116.2 - UTI 7.2 
  131.971  TH 116.2 - UTI 7.2 
  131.856  TH 116.2 - UTI 7.2 
  131.744 
  131.632 
  131.518 
  131.402 
  131.286 
 

4 MS Munsingen - WCH Wichtrach (330)   
  125.578 
  125.472 
  125.370 
  125.270 
  125.154 
  124.922  MS 26.2 - WCH 2.2 (221678) 
  124.806  MS 26.2 - WCH 2.2 
  124.690  MS 26.2 - WCH 2.2 
  124.574  MS 26.2 - WCH 2.2 
  124.458  MS 26.2 - WCH 2.2 
  124.342  MS 26.2 - WCH 2.2 
  124.226  MS 26.2 - WCH 2.2 
  124.127  MS 26.2 - WCH 2.2 
  124.025  MS 26.2 - WCH 2.2 
  123.877  MS 26.2 - WCH 2.2 
  123.771  MS 26.2 - WCH 2.2 
  123.539  MS 26.2 - WCH 2.2 
  123.423  MS 26.2 - WCH 2.2 
  123.308  MS 26.2 - WCH 2.2 
  123.203  MS 26.2 - WCH 2.2 
  123.103  MS 26.2 - WCH 2.2 
  122.987  MS 26.2 - WCH 2.2 
  122.871  MS 26.2 - WCH 2.2 
  122.755  MS 26.2 - WCH 2.2 
  122.639  MS 26.2 - WCH 2.2 
  122.416 
 

2 KI Kiesen - UTI Uttigen (332) 
  130.894  UTI 2.1 - 7.1 (269603) 
  130.800 
  130.658 
  130.542 
  130.484 
  130.428 
  130.314  UTI 2.2 - WCH 19.2 (269602) 

  130.198  UTI 2.2 - WCH 19.2 
  130.082  UTI 2.2 - WCH 19.2 
  129.976  UTI 2.2 - WCH 19.2 
  129.870  UTI 2.2 - WCH 19.2 
  129.754  UTI 2.2 - WCH 19.2 
  129.700  UTI 2.2 - WCH 19.2 
  129.640 
  129.520 
  129.410  UTI 2.2 - WCH 19.2 
  129.290  UTI 2.2 - WCH 19.2 
  129.180  UTI 2.2 - WCH 19.2 
  128.950  UTI 2.2 - WCH 19.2 
  128.830  UTI 2.2 - WCH 19.2 
  128.720  UTI 2.2 - WCH 19.2 
  128.600  UTI 2.2 - WCH 19.2 
  128.500  UTI 2.2 - WCH 19.2 

 
5 RUB Rubigen - MS Munsingen (329) 
  121.925  MS 21.1 - 7003.2 (271448) 

  121.808  MS 4.1 - 7003.1 (271447) 
  121.693  MS 4.1 - 7003.1 
  121.461 
  121.345 
  121.229 
  121.113  MS 2.2 - RUB 11.2 (250548) 
  121.004  MS 2.2 - RUB 11.2 
  120.893  MS 2.2 - RUB 11.2 
  120.781  MS 2.2 - RUB 11.2 
  120.669  MS 2.2 - RUB 11.2 
  120.557  MS 2.2 - RUB 11.2 
  120.445  MS 2.2 - RUB 11.2 
  120.331  MS 2.2 - RUB 11.2 
  120.215  MS 2.2 - RUB 11.2 
  119.880  MS 2.2 - RUB 11.2 
  119.763  MS 2.2 - RUB 11.2 
  119.650  MS 2.2 - RUB 11.2 
  119.417  RUB 4.1 - 11.1 (128548) 
  119.301  RUB 4.1 - 11.1 
  119.186  RUB 4.1 - 11.1 
 

3 WCH Wichtrach - KI Kiese (331) 
  127.900  UTI 2.2 - WCH 19.2 (269602) 

  127.669  UTI 2.2 - WCH 19.2 
  127.553  UTI 2.2 - WCH 19.2 
  127.437  UTI 2.2 - WCH 19.2 
  127.321  UTI 2.2 - WCH 19.2 
  127.209  UTI 2.2 - WCH 19.2 
  127.093  UTI 2.2 - WCH 19.2 
  126.977  UTI 2.2 - WCH 19.2 
  126.865  UTI 2.2 - WCH 19.2 
  126.749  UTI 2.2 - WCH 19.2 
  126.633  UTI 2.2 - WCH 19.2 
  126.517  UTI 2.2 - WCH 19.2 
  126.401  UTI 2.2 - WCH 19.2 
  126.291  UTI 2.2 - WCH 19.2 
  126.175 
  126.059 
  125.954  WCH 9.2 - 19.1 (290861) 

  125.856  WCH 9.2 - 19.1 
 

6 GUES Gumligen Sud Abzw. - RUB Rubige (2375) 
  118.782  RUB 4.1 - 11.1 (128548) 
  118.665 
  118.550 
  118.434 
  118.318 
  118.202 
  118.086  GUE 51.2 - RUB 2.2 (137514) 
  117.970  GUE 51.2 - RUB 2.2 
  117.850  GUE 51.2 - RUB 2.2 
  117.740  GUE 51.2 - RUB 2.2 
  117.620  GUE 51.2 - RUB 2.2 
  117.510  GUE 51.2 - RUB 2.2 
  117.340  GUE 51.2 - RUB 2.2 
  117.230  GUE 51.2 - RUB 2.2 
  117.110  GUE 51.2 - RUB 2.2 
  116.770  GUE 51.2 - RUB 2.2 
  116.650  GUE 51.2 - RUB 2.2 
  116.540  GUE 51.2 - RUB 2.2 
  116.430  GUE 51.2 - RUB 2.2 
  116.310  GUE 51.2 - RUB 2.2 
  116.200  GUE 51.2 - RUB 2.2 
  115.857  GUE 51.2 - RUB 2.2 
  115.741  GUE 51.2 - RUB 2.2 
  115.222  GUE 51.2 - RUB 2.2 
  115.012  GUE 51.2 - RUB 2.2 
  114.898  GUE 51.2 - RUB 2.2 
  114.844 
  114.619 
  114.512 
  114.343 
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  114.240 
  113.744 
  113.704 
  113.620 
  112.246  GUE 5.1 - OST 56.2 (125491) 
  112.017  GUE 5.1 - OST 56.2 
  111.905  GUE 5.1 - OST 56.2 
  111.850 
  111.742 
  111.529 
  110.914 
 

 

The test route from Thun (kilometer 131.961) to Ostermundigen (kilometer 111.529) is 20.43 kilometers 

long and contains 187 visually observable kilometer panels, which corresponds to one panel every 109 

m. Note, that the route formally should contain 204 kilometer panels. However, 17 panels are not visible 

from the current camera perspective. Of the 187 visually observable kilometer panels, 36 are not fully 

in the camera FoV and are thus not detectable. However, this can easily be address with a different 

camera setup. For the remaining analysis, we thus use the 151 fully detectable kilometer panels as 

benchmark (100 %). On the full test route, 81 track sections and 136 kilometer panels (90.06 %) were 

detected. For the whole test route, we observe a maximum distance of around 1.1 km, where no kilo-

meter board is successfully detected. However, we note that this is occurs mostly around stations and 

for overland sections, we observe maximum non-recognized distances of around 200 - 300 m. Of the 

not-detected kilometer boards, 9 (5.96 %) were wrongly detected and 4 (2.65 %) were not readable due 

to motion blur. Further reasons for non-detected kilometer boards and track sections during the journey 

are: 

• Kilometer boards not completely visible (36 of 187 visually observable panels = 19.25 %) or not 

detectable due to motion blur (4 of 151 visually detectable panels = 2.65 %). 

• The side camera was mounted in a horizontal orientation during the test drive. 

 Since the KM boards are not always fastened at the same height, not all boards were com-

pletely recognizable during the test drive. This could be improved by vertically aligning the cam-

era and expanding the field of view accordingly. 

• Some kilometer boards were not correctly recognized by the neural network (9 of 151 visually 

detectable panels = 5.96 %). For good results, approximately 2000 labels should be recorded 

per class (0..9), ie approximately 20000 labels. Our training data set only includes approximately 

4000 labels. The results can certainly be improved here by further labeling. 

• In DfA Topology, a distinction is made between the track section of a mainline track and the 

track section of a switch. At the moment we are only evaluating tracks from mainline tracks. 

Switches could be processed in a further developed version of the PoC. 

• Several kilometer boards are required before a first track can be determined. 

If we also use GNSS, this would be ideally possible with the first kilometer board. 

• Tracks are not visually recognizable because they are too far on the outside of the picture. 

Tracks to the left or right of the lane are covered by walls, noise barriers, platforms, earth walls, 

etc. 

7.5.9 Performance 

With the following optimisations it would be possible to improve the inference performance: 

• Reduction of the neural network from RGB to grayscale, i.e. from 3 to 1 channel 
• Use of the Tiny-YOLO network architecture. In contrast to YOLO v3, this network has 

considerably fewer layers. 
• Multi-threading in the Qt application for image processing tasks 

• Multi-threading when accessing the YOLO networks 
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On the development system (Nvidia DGX-1), a performance of >400 FPS for two video channels could 

be achieved when using only one graphics processing unit (GPU). The load on the GPU is approximately 

85%. It should therefore be possible to run the software on a lower performance system, e.g. Nvidia 

AGX-Xavier to operate in real time. There are also further conceivable optimisations, such as the use 

of TensorRT. 

7.5.10 More precise lateral localisation 

In the current approach the lateral position is determined through the detection of the kilometer panels. 

However, detection of the panels only gives the lateral position as “in front of the mast”. Here, we pro-

pose to use optical methods to determine the distance between the detected panel and the camera. 

Together with the track selective information the distance can then be used to accurately determine the 

longitudinal position of the train.  

The exact distance between the train and the kilometer panel can be detected using different ap-

proaches.  

• Stereo-vision distance estimation using the front and the side (45°) cameras. Note, that this 

approach requires the panel to be detected simultaneously in both images and the cameras 

have to be precisely calibrated and rectified towards each other. 

• Distance estimation based on the size of the kilometer panel (see Figure 7-14 top). The kilo-

meter panels have an exactly defined shape and size. Thus, the distance between the camera 

and the detected panel can be estimated based on the size of the panel in the captured image. 

Here, the size of the panel in the image can be measured using conventional computer vision 

approaches. Note, that this approach requires only one camera. However, the relative alignment 

between the camera and the ground plane has to be known. 

• Mono-camera distance estimation based on deep-learning (see Figure 7-14 bottom). Currently 

there exists various network architectures, which can estimate pixel-wise depth in single camera 

images. However, the accuracy of these deep-learning approaches critically depends on the 

similarity of the training images and the prediction image. This means, that the networks have 

to be trained using the same camera setup and similar environments as for the final prediction. 

Here, two general types of approaches exist. 

• Supervised approach: The networks are trained using “Ground Truth” distance data 

extracted from Light Detection and Ranging (LiDAR) sensors. 

• Unsupervised approach: The networks are trained using only a stereo-camera setup or 

using sequential images. Note, that for the sequential images, the relative scale of the 

distance estimation is not given and has to be determined. 
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Figure 7-14. (top left) Shape and size regulation of kilometer panels. (top right) Image from side camera (45°) 

showing a mast and a detected kilometer panel (green box). Using the size of the kilometer panel, the distance is 

estimated as 24.5 meter. (bottom left) Pixel wise depth estimation using a pre-trained unsupervised network 

(Monodepth2 [Godard, C., Aodha, O.M., Firman, M., Brostow, G., arXiv:1806.01260]) for monocular depth esti-

mation. Note, that the pixel wise depth is not well estimated and the distance to the panel is calculated as only 5.5 

meter. (bottom left) Pixel wise depth estimation using an unsupervised network (Monodepth2) finetuned on DFZ 

data. Note, that the pixel wise depth is much better estimated than for the pre-trained model and the distance is 

calculated as 16.0 meter. 

  

Note, that further experiments and parametrization is required to evaluate the accuracy and precision 

of all the possible approaches. This is discussed in detail in chapter 7.6.1. 

7.5.11 Route prediction and improved track selection 

In the current PoC framework the tracks are selected using object detection (see Chapter 7.3). In this 

chapter, we investigate the use of semantic segmentation to improve track selection. Additionally, se-

mantic segmentation could possibly be used to not only detect the tracks but to also determine the 

switch position and to predict the future route. In contrast to object detection, semantic segmentation 

does not detect objects in the image, but instead determines the class of every individual pixel within 

the image. In the autonomous driving industry this technique is used to improve object detection, to 

determine the drivable area and for lane detection.  

Here, we investigate the use of semantic segmentation for two tasks. First, we use semantic segmen-

tation to detect all tracks in a given image. Second, we investigate the harder task of segmenting only 

the current drivable track. This step also involves detecting the correct pathway at visible switches.  

Datasets. For the semantic segmentation of all visible tracks we used the RailSem19 dataset [O. 

Zendel, M. Murschitz, M.Zeilinger, D. Steininger, S. Abbasi, C. Beleznai: RailSem19: A Dataset for 

Semantic Rail Scene Understanding. CVPR Workshops 2019: 32-40]. This dataset contains 8’500 im-

ages (1920 x 1080 px) from front perspective of the train from all over the world. Additionally, the dataset 

already contains ground truth labels for the rails (rail-raised) and the track bed (rail-track). Note, that we 

expect the publication of the RailSem20 dataset, which should contain a more diverse set of track 

scenes. 
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For the pathway prediction, we adapted 273 images of the RailSem19 dataset to only segment the 

current drivable track. Additionally, we used 191 images (640 x 360 px) from the SBB (Passenger Traffic) 

internal education videos for train drivers, to generate the SBBSem19 dataset. For this dataset we se-

lected images containing interesting switch and track layouts. We then used the track selection model 

trained on RailSem19 to segment all visible tracks in the SBBSem19 dataset. Finally, we manually de-

leted all non-drivable tracks from the segmentation ground truth.  

Network architecture. For both semantic segmentation tasks we use a CNN based on the DeepLab 

framework, which is currently the state-of-the-art for semantic segmentation. We also investigate the 

use of the Harmonic DenseNet architecture, which promises an accelerated inference. However, we 

found that the DeepLab framework achieves a better performance at around the same inference time 

as the DenseNet architecture.  

Training. The training of the semantic segmentation network is done as follows: 

1. Pre-train network using the Cityscape dataset (25’000 annotated images, including segmenta-
tion mask of 30 classes, of urban street scenes). For this step, we downloaded an already 
pre-trained network directly from the publishers.  

2. Transfer learning using RailSem19 dataset to detect all visible tracks (only use rail-raised and 
rail-track segmentation classes). 

3. Transfer learning using adapted RailSem19 and SBBSem19 datasets to detect only the cur-
rent drivable track. 

Note, that the second step can also be omitted for the route prediction. However, including the second 
step leads to a better performance. Table 7-7 shows the hyper-parameters used for all of the transfer 
learning steps. 

 
Table 7-7. Hyper-parameters used for the transfer learning steps. 

Image size Batch size Learning rate Momentum Iterations 

640 x 360 px 88 7E-3 0.9 100’000 

 

Results. In general, a good performance is achieved for both segmentation tasks. For the route predic-

tion task, we find, that a better performance is achieved if a single combined label instead of two sepa-

rate labels for rail-raised and rail-track is used. Figure 7-15 shows the route prediction results for an 

exemple set of images. Note, that the route prediction works at different lighting conditions and for dif-

ferent switch and track layouts. However, we note that the evaluation is not extensive and has to be 

done in a more qualitative manner for a wider range of lighting and environmental conditions as well as 

for more diverse switch and track layouts. For example, the current dataset contains only a very limited 

number of cross-switches.  

Additionally, the current approach does not contain any short-term memory. Thus, if the train is located 

exactly above a switch, the correct route is ambiguous and cannot be predicted.  
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Figure 7-15. Example images showing the semantic segmentation of the predicted route. 
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7.6 Next Steps 

The next building blocks required, prior to the deployment of the presented optical localisation are 

roughly sorted into four tasks. Whereas their priority is given according to the order below. 

• Further development and refinement of the optical localisation method 

• Data processing, standardization and publication (SBB intern) 

• Evaluation and direct comparison of optical localisation with the other investigated localisation 
approaches (optical flow, GNSS, IMU, odometry, FOS) 

• Sensor fusion (optical localisation, optical flow, GNSS, IMU, odometry, FOS) 
 

7.6.1 Further development and refinement 

Moving forward there are three aspects of the optical localisation, which have to be improved or devel-

oped further.  

• Night vision and restricted visibility 

• Route prediction and improved track selection 

• More precise lateral localisation 
 

Night vision and restricted visibility. Optical localisation is well suited to act as a complementary 

method to other localisation approaches, such as GNSS or IMU, as it is not limited by the same disad-

vantages (required external signal or scale drift). However, optical localisation has its own limitations, 

which have to be addressed prior to deployment. The main limitation is its failure due to restricted visi-

bility conditions, such as fog, blinding light or at night. In order to overcome these limitations, we propose 

to investigate the use of short-wave infra-red (SWIR) cameras.  Currently SWIR cameras are mainly 

used for military applications due to their ability to produce high quality images even at restricted visibility 

conditions, such as blinding light, fog and at night. For commercial applications the use of SWIR has 

been mainly limited by its high cost and the highly inconvenient SWIR camera setup. However, recently 

commercial SWIR cameras based on CMOS chips, such as the Raven SWIR camera from TriEye 

(https://trieye.tech/ ), have become available at a greatly reduced price range. Further, SWIR cameras 

can be combined with active illumination in the infra-red spectra, without affecting the train driver or 

other involved people.  

As a next building block, we propose to investigate, if such SWIR cameras can be used in the presented 

optical localisation approach.  

Route prediction and improved track selection. In the current approach all the tracks at the bottom 

of the image are detected using deep-learning based object detection. The used track is then selected 

trough knowledge of the relative camera position on the train. This approach has a high success rate 

for up to four roughly parallel tracks. However, there are many sections in the swiss railway network, 

which have a more complex track layout. This is mainly the case in the vicinity of railway stations. In 

such sections there are often more than four tracks simultaneously in the camera field of view (FOV) 

and the tracks are not parallel but contain many crossings and intersections.  

Here, we propose two possible solutions. First, more training data of such track layouts could help to 

boost the detection performance. Second, the detection of the switch states could aid the lateral locali-

sation. The idea is, that starting on a known track, e.g. coming from a simple track layout, knowledge of 

the switch states can help to track the exact lateral position of the train. Further, detection of the switch 

state would enable optical route prediction. This could also be beneficial for other applications.  

Here, we suggest investigating two different approaches to detect the switch state. Note, that there 

might also be other approaches available in the literature. The first approach consists of using deep-

https://trieye.tech/products/
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learning based object detection to directly determine the different switches and their states. The second 

approach is based on the lane-detection approaches used in the autonomous car industry. Initially, 

semantic segmentation is used to detect the selected track throughout the whole image. Next, the switch 

state is determined based on the position of the detected switch and the geometric layout of the seg-

mented track.  

Within our data set, we are already able to reliably detect switches, without their state, and to success-

fully segment the selected track through the whole image (see chapter 7.5). However, both approaches 

do not yet generalize well to other switch and track layouts. Thus, we need to acquire more training data 

of different switches to boost the performance of the algorithms. 

More precise lateral localisation. In the current approach the lateral position is determined through 

the detection of the km-signs. However, detection of the signs only gives the lateral position as “in the 

vicinity of the sign”. Here, we propose to use optical methods to determine the distance between the 

detected km-sign and the camera. Together with the lateral train position the distance can then be used 

to accurately determine the longitudinal position of the train.  

In chapter 7.5 we present different optical approaches to measure the distance based on our camera 

setup. However, all of the presented approaches require additional data. The geometric based ap-

proaches require the known coordinate transformation between the front and the side camera. Further, 

they also require the known coordinate transformation between one of the cameras and the ground-

plane. This can either be achieved using an initial calibration together with an IMU or using ground-

plane estimation based on the observed tracks (see chapter 3.3). Additionally, all approaches require 

ground-truth distances from LiDAR, either for training (deep-learning based approaches) or for evalua-

tion (all approaches) 

Further, we propose to extend the lateral localisation approach to other objects, such as switches, which 

are well referenced in the DfA. 

7.6.2 Data processing, standardization and publication (SBB intern) 

Currently all the generated raw and labeled data (detected tracks and other objects, segmented tracks 

as well as detected and classified km-signs) are only available within our group (PFI). However, this 

data can also be of great value in other projects. Thus, we propose to process, unify and standardize 

this data in order to hand it over to the LocLab.   

7.6.3 Further evaluation and testing 

Prior to deployment the optical localisation method has to be further evaluated and tested. Additionally, 

the method has to be benchmarked and tested against the other investigated localisation methods (op-

tical flow, GNSS, IMU, odometry, FOS). Therefore, we propose to generate additional data for a diverse 

set of railway sections and various conditions. To enable cross-modular evaluation and comparison, the 

additional data should be generated simultaneously with the data required for the other localisation 

methods. 

7.6.4 Sensor fusion 

Finally, a safe and reliable train localisation is only guaranteed using a combination of the different 

localisation approaches (optical localisation, optical flow, GNSS, IMU, odometry, FOS). Thus, sensor, 

e.g. through a Kalman-Filter, has to be investigated. Especially the combination of optical flow, IMU or 

odometry with optical localisation appears promising. Here, optical flow, IMU or odometry could be used 

to update the train position at a fast rate, while optical localisation can be used to avoid scale drift. 
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9 Glossary 
See also link to glossary Polarion: https://trace.sbb.ch/polarion/#?shortcut=Glossar%20Deutsch 

AprilTag AprilTag is a visual fiducial system, useful for a wide variety of tasks in-
cluding augmented reality, robotics, and camera calibration. 
(https://april.eecs.umich.edu) 

CNN Convolutional neural network 

dB Decibel: Decibel is an auxiliary unit of measurement to indicate the sound 
pressure. 

DfA Topology database (Datenbank der festen Anlagen) 

DFT Discrete Fourier Transform 

DFZ SBB diagnostic vehicle  

ESF Entropy Spectral Flatness 

ETCS European Train Control System, signalling and control component of the 
European Rail Traffic Management System 

FFT  Fast Fourier Transform 

FN False Negative (Incorrectly identified as Positive) 

FOS Fiber Optic Sensing 

FoV Field of view  

FP False Positive (Incorrectly identified) 

GAMAB Globalement au moins aussi bon – Generally at least as good: A new 
system should be at least as safe or low-risk as any existing comparable 
system (cf. European railway standard EN 50126, 1997). 

GGA NMEA sentence containing time, position, and fix related data 

GNSS  Global Navigation Satellite System 

GPU  Graphics processing unit 

GTG GTG - GleisTopoGraphie 

GUI Graphical User Interface 

IMU  Inertial Measurement Unit 

IR Infra-red radiation: electromagnetic radiation with wavelength from 700 
nanometers to 1 millimeter  

LiDAR Light Detection and Ranging 

MSE Mean Squared Error 

NIR Near Infrared Radiation: electromagnetic radiation with wavelength from 
700 to 1400 nanometers. 

NMEA Serial communications protocol that defines how data are transmitted in a 
sentence from one talker to multiple "listeners" at a time.  
https://www.nmea.org/content/STANDARDS/NMEA_0183_Standard 

OBU On Board Unit 

PFI Platform for Research and Innovation (Plattform für Forschung und Inno-
vation) 

PoC Proof of Concept  

PSD Power Spectral Density 

https://trace.sbb.ch/polarion/#?shortcut=Glossar%20Deutsch
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Qt Application framework and GUI toolkit for cross-platform development of 
programs and graphical user interfaces. 

RGB Red green blue color image 

RMC NMEA sentence containing position, velocity, and time 

SF Spectral Flatness 

SLAM Simultaneous Localisation And Mapping 

SNR Signal to Noise Ratio 

STFT Short Time Fourier Transform 

SWIR Short wave infra-red 

TP True Positives (Correctly identified) 

TPR Train Position Report 

Vanishing point point on the image plane of a perspective drawing where the two-dimen-
sional perspective projections (or drawings) of mutually parallel lines in 
three-dimensional space appear to converge. 

YOLO "You Only Look Once" convolutional neural network 

ZDA NMEA sentence containing UTC day, month, and year, and local time 
zone offset 

 


