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Abstract

Providing punctual, reliable and enough services to customers is one main goal of railway

network operators. By automation of train scheduling, it is possible to schedule and route

trains on the network closer to its maximal capacity, which is of great value for network

operators. In this survey we state the general formulation of the railway scheduling problem

and show the principle of decomposition as a way to tackle it. The literature shows many

different decomposition approaches. With a survey we aim to summarize existing research

and state possible new directions for future research.
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1 Introduction

Railway traffic management is one fundamental aspect of railway network operation. Pro-

viding punctual, reliable and sufficient services to the customers is one main goal of network

operators. The operators are keen to route and schedule the movements of trains on the net-

work such that a schedule is robust to smaller disturbance, minimal in operational cost and

provides optimal travel times for passengers. Here we identify as schedule both, a plan of

operations, such as a timetable, which is planned much before operations, and also its ad-

justment shortly before operations, or even during the operations, i.e. real time rescheduling.

Most of the corresponding scheduling problems are known to be very complex and finding

a solution for a problem of practical relevance, e.g. tens of trains and hundreds of railway

kilometres, is far from trivial. In consequence a large variety of research has been devoted to

the solution of scheduling problems in railway traffic management. A promising approach

often seen in the literature is the decomposition of the scheduling problem. For problems

with non-deterministic polynomial solution time, it can be highly beneficial to decompose

the problem and solve multiple instances of reduced size instead of one large instance to

reduce the effect of the scalability issues. In this paper we will state the general formulation

of a railway scheduling problem and elaborate the structure within. A survey on principles

and methods shall give an overview of well studied decomposition approaches in the liter-

ature applicable for scheduling problems and conclude in an advisable direction for future

research.

The paper is outlined as follows. In section 2, we state the general problem faced in rail-

way scheduling and provide a brief overview of mathematical formulations of the problem.



In section 3 we explain decomposable structures and how they occurs in scheduling to then

provide the basic principles to exploit these structures in the solution process. A overview

of practical methods based on principles from section 3 are given in section 4 together with

connection to the literature in railway scheduling. The paper concludes in section 5 with a

outlook on possible future research.

2 The Problem of Railway Scheduling

The hierarchy in operational planning of railway network operation consists out of three

layers according to the time of operations. On the highest layer the line planning is per-

formed to determine necessary connections in between individual stations. On the middle

layer the task is to route and schedule individual trains. On the lowest layer the rolling

stock planning and crew scheduling is done. In the context of this survey we focus on the

middle layer, especially on the scheduling of trains, i.e. below we assume that the route of

individual trains are a priori fixed and not open for decision, this happens because either the

timetable does not consider rolling stock circulation, as in the typical timetabling problem;

or because the rolling stock circulation is already solved, i.e. in the real time rescheduling

problem.

2.1 Scheduling

The construction of an operational plan for a railway network with arrival and departure

times for every individual train is know as the railway scheduling problem. It inherits deci-

sions on arrival, dwell and departure times as well as ordering of all trains on the network.

Well scheduled operational plans aim to minimize or maximize certain operational as-

pects, that are crucial for the network operators. The literature provides a large variety of

different aspects that are used as objective to scheduling. A very common aspect is the

cumulative or largest delay in the network, which operators are keen to keep as small as

possible. Alternative aspects, objective to scheduling, seen in the literature are the travel

time of passengers, the amount of transported passengers or the operational cost. In reality

it is usually a combination of all those aspects that lead to good scheduling.

The scheduling process is always subject to constraints arising from many different

sources and affecting the process in different ways. Some constraints have their origin in the

non-physical aspects of scheduling, e.g. demands arising from the line planning. Those can

be time windows for arrival or departure times of a train, minimal dwell times of a train or

connections to other trains on the same station that have to be ensured. The physical side of

the railway network restricts the schedule by the dynamics of the specific used rolling stock

and operational safety. For safety reasons, trains are not allowed to exceed a certain speed

and must follow a minimal distance or time headway in between each other. In addition, no

pair of trains can simultaneously use the resource in the network.

The problem of scheduling is to find a detailed schedule of arrival and departure times

for all trains at all strategic points on the network. A such schedule must be executable

by all trains, must not lead to any conflicts when executed and must not violate any of the

operational or physical constraints from above. Possible strategic points on the network

are stations, junctions or signals. Preferably the schedule is optimal or near optimal with

respect to the objectives important to the network operators.



2.2 Problem formulation

To solve the scheduling problem automatically in an optimal way, it has to be formulated

in a well defined mathematical form. The formulation should be able to at least capture all

of the crucial objectives and constraints previously mentioned. In the railway scheduling

problem considered for this survey, two type of variables are open for decision. First, the

order of events happening on the railway network has to be decided, i.e. in which order the

trains pass a certain resource of the network. When decided on the order, exact entering and

exiting times for all trains and resources in the network have to be decided. In the actual

problem only entering or leaving times are necessary, as the time of leaving corresponds to

time of entering the next resource. As such, the railway scheduling problem can be easily

put in the frame of a job-shop scheduling problem, with train rides corresponding to jobs

and resources in the network corresponding to machines. An operation of an individual job

then corresponds to a train passing a resource on the network.

In the following we provide a brief overview of different modelling techniques to math-

ematically capture the railway scheduling problem, common in the literature. The overview

is kept brief as the focus will lie on decomposition techniques. For extensive surveys we re-

fer to the surveys by (Fang et al. (2015)), (Corman and Meng (2014)) and (Narayanaswami

and Rangaraj (2011)).

Mixed-Integer Linear Program

A mixed-integer linear program is an optimization problem where one part of the optimiza-

tion variables x are integer, and the remaining variables are continuous variables,

min
x

c⊤x

s.t. Ax ≤ b

x ∈ Z
n × R

m

(1)

where A is a matrix and b a vector of appropriate size respectively. With this formula-

tion the scheduling problem can be captured in a very natural way. For tactical decisions

such as train ordering and resource assignment, binary variables are introduced in the pro-

gram. Event times are individually represented by continuous variables. Interactions be-

tween events on the railway network are imposed intuitively by linear constraints in the

mixed-integer linear program. The literature provides a large variety of mixed-integer for-

mulations for railway (re)scheduling, e.g. (Törnquist and Persson (2005)) and (Tsinghua

and Yan (2012)), where a tabu search and commercial solvers respectively are used to re-

trieve a solution. In (Dessouky et al. (2006)) an alternative mixed-integer formulation is

introduced, where a Branch-and-Bound scheme searches the solution space for feasible so-

lutions. For more references on mixed-integer formulations, we refer to (Fang et al. (2015))

and (Narayanaswami and Rangaraj (2011)).

A reduction of the mixed-integer linear program to a pure integer linear program, by

removal of the continuous variables is a quiet common alternative to mixed-integer in rail-

way scheduling. Often, integer formulations of scheduling problems are achieved using

time discretization. Tactical decisions for scheduling are as in the former case, modelled

as binary decision variables. In difference to the mixed-integer formulation, event times

are transformed to integer values by time discretization. In (Dollevoet et al. (2012)) an in-



teger programming formulation by time discretization is used for delay management and

passenger rerouteing. In a further work it is shown that the same model can be extended

to incorporate capacity constraints (Schöbel (2009)). (Caimi et al. (2011)) present an alter-

native way to formulate the scheduling problem as an integer program. Only a finite set of

fixed possible realizations of the continuous variables in a corresponding mixed-integer for-

mulation are considered in the problem. The scheduling problem reduces to a constrained

decision process on the different fixed realizations of continuous variables, i.e. an integer

linear program. The approach was later used for model predictive rescheduling in (Caimi

et al. (2012)). Integer programming formulations are usually applied in cases where a set

of solution candidates is simple to generate. For example, integer programming is common

in rerouteing problems of railway traffic, where often a set of alternative train routes, pro-

vided by heuristics based on the experience of experts, has to be compared and matched to

a feasible solution.

Constraint Programming

An alternative to mixed-integer or integer formulations of the scheduling problem is con-

straint programming. Similar to the former formulations a constraint program bases on a

feasible set, defined by a set of constraints, e.g. assignment or disjunctive constrains, which

in contrast to mixed-integer programming are mainly logic statements. Typically these are

used to assign resources of the network to events or constrain the disjunctive order of events.

A slightly different formulation of the constraints in comparison to mixed-integer and inte-

ger formulations allows to formulate equivalent problems with fewer variables. Constraint

programming does not have an objective such as mixed-integer programming but an evalu-

ation criterion to determine the best solution found. An application of constraints program-

ming is found in (Rodriguez (2007)), where Rodriguez et al. use constraint programming

for real-time railway scheduling at junctions.

Alternative Graph

Alternative graphs are a technique introduced by (Mascis and Pacciarelli (2002)) to formu-

late job-shop scheduling problems and can be used to capture a railway scheduling problem

in a special kind of graph theoretical model. In the alternative graph, nodes represent events

in time to be scheduled, and arcs represent separation constraints of those events. Two types

of arcs exist in the alternative graph. Fixed arcs define an unchangeable relation between

events, i.e. a fixed order of events. Alternative arcs occur in pairs, to describe a disjunctive

order of two events. A complete selection on an alternative graph, is a selection of alterna-

tive arcs, one from each pair, where no additional arc can be selected. Under the condition

that the selection represents a meaningful ordering of events, a schedule for the events in the

graph is determined by the longest path in the tree of the complete selection of alternative

arcs. As show by (Fang et al. (2015)), the alternative graph is a very common formula-

tion technique in railway scheduling, as for example in (Corman et al. (2010)) distributed

scheduling of railway systems is performed, based on the alternative graph formulation.

Discrete Event Model

All former formulation techniques inherit all possible orders of trains for every resource of

the network. In difference to this, a discrete event model only contains a subset of possible

orders. The model is dynamically allocated by forward simulation from a discrete event to

the next, where discrete events are basically trains reaching certain strategic points in the



network. For ordering decisions during the forward simulation of the model, commonly

heuristics as in (Dorfman and Medanic (2004)) or dynamic programming as in (Ho et al.

(1997)) is used. When the forward simulation is terminated, a feasible schedule is found,

i.e. the model is dynamically built up during the solution process. (Van den Boom and

De Schutter (2006)) and (De Schutter and Van den Boom (2001)) use max-plus switching

algebra to formulate out all possible events and use the discrete model in a model predictive

control problem solved by a Branch-and-Bound. In (Kersbergen (2015)) a similar model

predictive reformulation is used to apply commercial solvers, e.g. CPLEX to the discrete

event model formulation.

2.3 Decomposition of Mixed-Integer Linear Programming

In the literature of mathematical programming decomposition is a widely know topic and

well established theory exists. In general, special structures within a mathematical program

are known to allow a decomposition of the problem, for instance if a variable or a group of

variables exists only in a single constraint (typical case is a diagonal matrix). A large variety

of different approaches to these structures exists for many different classes of mathematical

problems. Decomposition itself is motivated by parallelization, size reduction and simplifi-

cation of the original problem. Decomposition splits the problem into multiple subproblems

of smaller size, which allows for parallel and often more efficient solving, especially when

subproblems belong to a class of problems that can be solved very efficiently.

To profit form the theory on decomposition in mathematical programming, we are keen

to formulate the railway scheduling problem in an appropriate way. From the models previ-

ously introduced, mixed-integer programming is a such appropriate formulation and for the

case of railway scheduling the mixed-integer formulation naturally contains the necessary

structure to decompose the problem, see section 3. This motivates first a more detailed anal-

ysis of the railway scheduling problem structure in a mixed-integer formulation and second

a review on approaches for decomposition of mixed-integer programs.

Apart from the benefits of the mixed-integer formulation, there is no big disadvantage

caused by restricting ourself to it, as any other of the previously introduced formulations can

be transformed into a mixed-integer formulation. Constraint programming can be seen as

a complement to mixed-integer linear programming and as mentioned earlier, a constraint

program can be casted into a mixed-integer linear program under usage of additional vari-

ables. The alternative graph model can be brought in to the form of a mixed-integer linear

program by introducing binary decision variables for the pairs of alternatives arcs, together

with big-M constraints. Discrete event models can be casted into a mixed-integer program

as for example it is done in (Kersbergen (2015)).

In the remaining of the paper we will first elaborate the decomposable structure of the

railway scheduling problem formulated as a mixed-integer linear program and present dif-

ferent principles from the literature on decomposition, originated from linear programming

with no integer variables in section 3. In section 4 will provide an overview on methods from

the literature, that extend the principles form section 3 to the problem of railway scheduling,

i.e. a mixed-integer linear program.



3 Decomposable Structure of Scheduling Problems and Principles of

Exploration

Generally a mathematical program has to exhibit one out of two possible structure that al-

low for decomposition, i.e. complicating constraints or complicating variables as described

by (Conejo et al. (2005)). The literature shows many different approaches for the decom-

position of these two classes of special structured problems. In this section we will first

introduce the two structures in case of linear objective and constraints functions as it is

the case in a railway scheduling problem and point out the motivation behind the different

decomposition approaches, to afterwards show how these structures occur in the railway

job-shop scheduling problem. A survey on decomposition principles in linear programming

with no integers variables provides a perspective on the basis for today’s most common de-

composition methods in the complex case of mixed-integer linear programming, reviewed

in section 4.

Complicating Constraints

A mathematical program of linear objective and constraints in form of (2) inherit the struc-

ture of complicating constraints. A subset of constraints include a large set of the optimiza-

tion variables of the problem, which prevents a decomposition of the problem.

min
x1,··· ,xK≥0

c⊤1 x1 + c⊤2 x2 + · · ·+ c⊤KxK

s.t.
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(2)

The idea of decomposition is based on separating problem (2) into two sub problems, where

x = [x1, · · · , xK ]⊤ and A = [A1, · · · , AK ],

min
x≥0

c⊤x

s.t. Ax ≥ b
(3)

min
x≥0

c⊤x

s.t.







B1

. . .

BK






x ≥







d1
...

dK






.

(4)

In the literature (3) is usually called master problem, while (4) is referred as subproblem.

It easy to see that solving (3) and (4) does not necessarily provide a solution to (2). We

will later see appropriate modifications of the problems (3) and (4) to turn them into an

equivalent representation of (2). Note that by its diagonal structure, problem (4) can be

decomposed into K individual problems, which can be solved independently. Principles

in decomposition of complicating constraints are keen to not destroy the diagonal structure

through subproblem modifications. In addition, the subproblems are often significantly sim-

pler than the original problem, what together with the separation of subproblems motivated

many principles and methods in complicating constraints, reviewed in section 3.2 and 4.1

respectively.



Complicating Variables

The complementary case to complicating constrains in a mathematical program with lin-

ear objective and constraints, are complicating variables. A small subset of optimization

variables is present in a large set of constraints, as in (5).

min
y,x1,··· ,xK≥0

c⊤0 y + c⊤1 x1 + c⊤2 x2 + · · ·+ c⊤KxK

s.t.
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The decomposition approach is similar to the case of complicating variables. The prob-

lem is separated into two problems by individually optimize over y and x, with A =
[A1, · · · , AK ]⊤ and x = [x1, · · · , xK ]⊤,

min
y≥0

c⊤y

s.t. Ay ≥







d1
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dK







(6)

min
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c⊤x
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(7)

The master (6) and subproblem (7) are not yet an exact equivalent to (5) and similar to

complicating constraints, modification to both problems have to be made. Note, again the

subproblem (7) has diagonal structure and can be nicely decomposed, as long as the nec-

essary subproblem modifications do not destroy the structure. This observation, together

with the fact that the subproblem is often significantly simpler than the original problem

motivated principles and methods for complicating variables, reviewed in section 3.3 and

4.2 respectively.

3.1 Structure of Railway Scheduling Problems

In the railway scheduling problem both types of decomposable structures naturally occur.

Depending on how the optimization variables are grouped, one of the structures establishes.

In section 2 we showed that two type of variables, i.e. event times and ordering decisions

are open for decision, in the railway job-shop scheduling problem as we consider it in this

survey. Recall that in the problem, train rides refer to jobs, network resources refer to

machines, and a train passing a resource is referred to an operation of the corresponding

job. Defining these variables by ti,j,m for the event times and pi,j,m for the decisions, each

variable has three indices,

ti,j,m, pi,j,m :







i operation index

j job index

m machine index

.

In accordance with the indices of the variables, we can group either the variables or the

constraints of the scheduling problem by three criteria i.e, by groups of machines, by groups

of jobs or by groups of operations. Grouping by operations refers to grouping variables by



the assumed event time of the associated operation into groups of different time windows.

Figure 1 illustrates on the constraint matrix how grouping by variables lead to the structure

of complicating constraints, while grouping by constrains lead to complicating variables
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Figure 1: Grouping of variables: Complicating Constraints (left), Variables (right).

The grouping with respect to resources has a natural intuition for variable and constraint

grouping. When grouping variables, this corresponds to a separation of the railway network

in equivalent regions, all connected to some neighbours, see Figure 2. In (Caimi et al.

(2009a)), a such separation is used for a decomposition approach. When constraints are

grouped, the constraint matrix turns out to have the same structure as when the network is

decomposed in a master/slave manner, where sub regions of the network are slaves only

connected with the master region, see Figure 2. A similar decomposition is applied in

(Lamorgese and Mannino (2015)).

The variable grouping with respect to operations is similar to what is often done in tem-

poral decomposition of the railway scheduling problem, e.g. the rolling horizon approach.

Variables are grouped by time windows in which the according events are expected to occur.

As mentioned earlier, the natural occurrence of the decomposable structure is what moti-

vates a review of decomposition principles in linear programming with no integer variables,

i.e. the basis of decomposition methods in mixed-integer linear programming, which help

to tackle the problem of railway scheduling.

3.2 Principles for Complicating Constraints

For the structural exploration of a linear program with no integer variables and complicating

constraints, there are two very common principles in the literature. Both are motivated by

the idea of separating the complicating constraints from the diagonally structured part of the

problem, to make it simpler and decomposable.

Dantzig-Wolfe Reformulation

The reformulation of Dantzig-Wolfe is based on an alternative representation of a polytope.

A polytope, such as those in the diagonally structured part of problem (2),

xk ∈ PB,k := {x ∈ R+ : Bkx ≥ dk} (8)

can be represented by a convex combination of its extreme points and extreme rays,

xk =
∑

vg∈Gk

λgvg +
∑

wq∈Qk

θqwq, where
∑

vg∈Gk

λg = 1, λg, θq ≥ 0 (9)



Region 1 Region 2

Region 3

Slave 1 Slave 2

Slave 3

Master

Figure 2: Decentralized decomposition {l.}, Master/Slave decomposition {r.}

where vg , g ∈ Gk and wq , q ∈ Qk are extreme points and rays of PB,k respectively, a proof

is given in (Bertsimas and Tsitsiklis (1997)). For the readability we assume the polytopes

PB,k to be bounded , i.e. Qk = ∅. The general case is straight forward and can be found

in (Bertsimas and Tsitsiklis (1997)). With the alternative formulation of a polytope, linear

problem (2) can be reformulated to,

min
λ

∑

K

∑

vg∈Gk

(

c⊤k vg
)

λg

s.t.
∑

K

∑

vg∈Gk

(Akvg)λg ≥ b

∑

g∈Gk

λg = 1, λg ≥ 0 ∀k ∈ K

(10)

which is known as Dantzig-Wolfe reformulation. The cardinality of the sets Gk can be

exponentially large and it would be computationally very costly to perform the optimization

in (10) over all elements of Gk. The method of column generation allows to perform the

optimization in (10) over only a reduced subset of Gk, i.e. G̃k. Optimal dual multipliers of

the reduced problem provide information on how relaxation or tightening of an individual

constraint affect the objective value. These multipliers are used to search for elements

in Gk, that reduce the objective value and therefore must be added to G̃k to achieve an

optimal solution of (10). The search is known as pricing problem in column generation and,

by the diagonal structure in problem (2), can be performed over the individual polytopes

corresponding to Gk separately,

min
xk

(

c⊤k − u⊤Ak

)

xk

s.t. xk ∈ PB,k

(11)

where u are the optimal dual multipliers of (10). In case of (11) the optimal solution x∗
k is

either an extreme point or ray of PB,k , i.e. x∗
k ∈ Gk . In cases of strong duality, e.g. linear

programming with no integer variables, where the primal and dual are equivalent, column

generation is guaranteed to find an optimal solution, if one exists. Similar Dantzig-Wolfe



reformulations exist for linear programming with presence of integer variables, as it is the

case railway scheduling. Though one has to be aware that column generation in presence of

integer variables does no longer find an optimal solution but only provide a primal bound on

the optimization problem, as a result of the absence of strong duality. To solve the original

mixed-integer linear program additional techniques are necessary, which will be reviewed in

section 4. (Vanderbeck and Savelsbergh (2006)) propose an extension of the Dantzig-Wolfe

reformulation to the case of mixed-integer linear programming, in form of two different

approaches, i.e. convexification and discretization. In the convexification approach, PB,k in

(11) is replaced by the generating set Gk of its convex hull,

Gk = {(xg, yg) ∈ R
n × Z

p : (xg, yg) = extreme points of conv(PB,k)} . (12)

To impose integraliy in the convexification approach an additional integrality constraint is

necessary in (10),
∑

yg∈Gk

ygλg ∈ Z
p. (13)

The discretization approach in (Vanderbeck and Savelsbergh (2006)) is originated in integer

polytope theory. A rational integer polytope is known to be representable by a combination

of finitely many integer extreme points and rays of the polytope, similar to (9). In case of

mixed-integer, integer variables are then represented by the finite integer set, while continu-

ous variables are reformulated using the same technique as in the convexification approach.

We refer to (Vanderbeck and Savelsbergh (2006)) for exact definition of the generating in-

teger and continuous variable sets. In the discretization approach, the constraint (13) can

be replaced by the restriction λg ∈ {0, 1}. The corresponding pricing problems in both

approaches are identical to (11) except x ∈ Gk and no longer in PB,k. Note that in case

of binary integer variables in the original problem (2) convexification and discretization are

identical, as no integer interior points exists in PB,k. (Vanderbeck and Savelsbergh (2006))

provide further techniques to relax and simplify the generating sets of the discretization ap-

proach. Also Vanderbeck presents in (Vanderbeck (2000)) further alternative reformulations

of the generating sets in Dantzig-Wolfe decomposition.

Lagrangian Relaxation

The Lagrangian relaxation is less commonly used in decomposition as it is the case for

Dantzig-Wolfe reformulation. More often Lagrangian relaxation is used for dual bounds

on the objective value. Nontheless it can be used for decomposition in linear programming

with no integer variables and complicating constraints as in (Conejo et al. (2005)). The

idea is to relax the complicating constraints into the objective, such that the optimization

problem becomes decomposable,

z(u) = min
x1,x2,··· ,xK

u⊤b+
∑

K

(
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)

xk
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Note that the Lagrangian relaxation reformulation is the dual of the Dantzig-Wolfe refor-

mulation. As show in (Wolsey and Vanderbeck (2010)) the dual problem of (2) is given by



maximizing Lagrangian relaxation (14) over u,

max
u

u⊤b+ σ

s.t. u⊤Akvg + σ ≤ c⊤vg ∀g ∈ Gk, k ∈ [K].
(15)

The optimization over x in (14) has been replaced by the constraint in (15). The dual of

(15) is exactly (10). In cases of strong duality, solving dual problem zD = maxu z(u) from

relaxation of the complicating constraints results in a optimal solution pair of primal and

dual variables (x∗, u∗). The dual problem zD is commonly solved using a scaled gradient

method for the optimization over dual variables u as in (Fisher (1981)), while the optimiza-

tion over the primal variables xk is done explicitly, where the diagonal structure permits

a decomposed optimization. For the Lagrangian dual of mixed-integer programs, strong

duality does not hold in most cases. To this topic, (Geoffrion (1974)) provides deeper in-

sights on the Lagrangian bound for integer programming and in which cases, strong duality

still holds. In section 4 we present techniques that will help to overcome the lack of strong

duality, to solve problem (14) to integer optimality.

3.3 Principles for Complicating Variables

For the structural exploration in linear programming with no integer variables and com-

plicating variables, a large variety of different principles exist in the literature. Motivated

are these approaches through the observation, that fixing the complicating variables in a

problem of complicating constraints turns the problem into a significantly simpler subprob-

lem, in case of problem (5) even into a diagonally structured subproblem. The idea is to

separate the optimization over the complicating variables from the optimization over the

non-complicating variables in which complicating variables are fixed. Note, a solution to

the complicating variables is an optimal solution to the original problem, if also a solution

to the corresponding subproblem exists. If no solution to the subproblem exists, different

principles generate different types of constraints, i.e. cuts for the optimization over the

complicating variables, depending on the feasibility and optimality of the subproblem. In

the following we present the most common principle in the literature, which lead to nu-

merous abbreviated methods in mixed-integer linear programming for solving the case of

complicating constraints, reviewed in section 4.

Benders Decomposition

One of the earliest and most common cut generating principle in linear programming is the

decomposition method introduced by (Benders (1962)). By the dual representation of the

subproblem feasible set, feasibility cuts are generated. In addition, the dual representation

of the subproblem provides a lower bound on the contribution of non-complicating variables

to the objective of the original problem, that can be used as an optimality cut. In case of

problem (5), fixing the complicating variables y together with the diagonal structure yields

K different subproblems,

min
xk≥0

c⊤k xk

s.t Bkxk ≥ dk −Aky
(16)



and the K different dual subproblems respectively,

max
uk≥0

u⊤
k (dk −Aky)

s.t. u⊤
k Bk ≤ ck.

(17)

In the iterative process of Benders decomposition the master problem (5) is relaxed to pos-

sible constraints on y and from iteration to iteration more cuts are added to this master

problem. Given an optimal solution (y∗i , x
∗
i ) to the relaxed master problem at the i-th itera-

tion, the following three cases as described in (Bertsimas and Tsitsiklis (1997)) may occur

when solving the dual subproblem (17),

Case I: The dual subproblem has a feasible optimal solution u∗
k,i. If the inequality

u∗⊤
k,i (dk −Akyi) > c⊤k x

∗
k,i holds, the primal solution x∗

k,i of the master problem

is infeasible to the primal subproblem and the cut must be added to the master

problem,

u∗⊤
k (dk −Aky) ≤ c⊤k xk. (18)

Case II: The dual subproblem is unbounded, implying the primal subproblem is generally

infeasible. In this case, there exists an extreme ray wk,i with wk,i(dk −Akyi) >
0, which causes the unboundedness of the dual subproblem and has to be ex-

cluded by the following cut in the master problem,

wk,i(dk −Akyi) ≤ 0 (19)

Case III: All dual subproblems have a feasible solution and the master solution x∗
k,i is

primal subproblem feasible, i.e. u∗⊤
k,i (dk − Akyi) ≤ c⊤k x

∗
k,i for all k ∈ [K]. In

this case (y∗i , x
∗
i ) is an optimal solution to (5).

Note that in the case where the subproblems are linear and contain no integer variables,

the Benders cuts (i) and (ii) are valid, i.e. they are guaranteed to cut of part of the solution

space. This property is usually lost with the presence of integer variables in the subproblem.

Devoted to this problem, the literature holds a variety of generalizations and techniques to

overcome this issue. At first (Geoffrion (1972)) generalized the Benders decomposition to

a more general class of problems of the form,

min
y,x

f(y, x)

s.t. G(y, x) ≥ 0
(20)

where (20) does not have to be linear or even convex over y and x jointly but only convex

over x when complicating variables y are fixed. A further generalization to non-convex

subproblems, e.g. mixed-integer linear subproblems is given in (Wolsey (1981)). But as

mentioned by Wolsey the optimization in the subproblems is usually not practically possi-

ble, only in special cases, e.g. the case of a convex subproblem investigated by Geoffrion.

A different direction of generalization of Benders decomposition is introduced by (Hooker

and Ottosson (2003)) through logic-based Benders decomposition, where they introduce the

inference dual of an optimization problem for the generation of different Benders cuts. The



inference dual is a generalized concept of duality, which does hold for mixed-integer linear

subproblems. In (Hooker and Ottosson (2003)) an example on a multi-machine scheduling

problem is provided, where the inference duality concept generates cuts, which exclude a

infeasible set of job assignments to one machine, in the master problem.

In section 4 we will show methods from the literature, based on the former principles

of Benders decomposition to overcome the lack of strong duality and generate valid cuts in

the case of mixed-integer linear programming, e.g. railway scheduling.

4 Practical Decomposition Methods

The principles in section 3 are mostly only valid for linear / convex problems and exhaus-

tively make use of duality theory, especially the theorem of strong duality. The extension

of these principles to classes of problems where strong duality does not hold, e.g. mixed-

integer linear programming is usually not straight forward and often theoretical concepts

on this topic are not practical for actual computations. Still, the literature contains many

different methods, proposing practical algorithms based on principles from section 3.

4.1 Methods for Complicating Constraints

In case of missing strong duality, e.g. the mixed-integer linear program formulation of

railway scheduling, the Dantzig-Wolfe and Lagrangian reformulation no longer provide

optimal solutions, but only bounds on the objective of an optimization problem. In practical

methods, the use of these reformulation is motivated by the achievement of better bounds

on the objective value, often of great use in the solution process. For example in branching

schemes, tighter bounds can cause significant increase in performance of the overall method.

Furthermore, the computation of bounds becomes more efficient, thanks to decomposition

by reformulation.

Methods on Dantzig-Wolfe Decomposition

Dantzig-Wolfe reformulation allows to decompose problems of complicating constraints

by a reformulation based on the alternative representation of the feasible subproblem sets.

Column generation prevents the reformulation from becoming to large to solve. To retrieve

integer solutions in a Dantzig-Wolfe column generation reformulation, branching is neces-

sary, (Desaulniers et al. (2005)). The branching scheme imposes integrality on the relaxed

reformulation, where relaxation is necessary to apply column generation. These methods

are known as Branch-and-Price, i.e. a branching tree is built up, where at each node col-

umn generation is performed upto (sub)optimality and then a fractional part of solution is

branched. Branch-and-Price inherits several practical issues that have to be taken care of.

Column generation has to be performed at every node as it is possible that a column, non-

optimal at an earlier node becomes cost reducing on the current node, due to additional inte-

grality restrictions from branching. Considering branching itself, it is known for a fact that

standard branching schemes are not suitable for an integer program from a Dantzig-Wolfe

reformulation, (Vanderbeck (2000)). Alternative branching schemes have been proposed

in (Vanderbeck and Wolsey (1996)), (Barnhart et al. (1998)) and in more general form in

(Vanderbeck (2000)). Instead of branching on individual λg variables in problem (10), a



common alternative is to branch on the sum of a subset of λg variables,

∑

g∈Ḡ⊆G̃

λg ≥ ⌈α⌉ ;
∑

g∈Ḡ⊆G̃

λg ≤ ⌊α⌋
(21)

for the upper and lower branch respectively. The constant α =
∑

g∈Ḡ⊆G̃ λg is fractional,

where, e.g. in (Vanderbeck and Wolsey (1996)) it has been proven that a such subset Ḡ

exists, if a solution λ∗ to (10) is fractional. An other alternative to standard branching is

to branch on the original variables of problem (2), which is applied in case of different

subproblems,
∑

g∈Ḡk⊆G̃k

vgλg ≥ ⌈αk⌉ ;
∑

g∈Ḡk⊆G̃k

vgλg ≤ ⌊αk⌋ (22)

with αk similarly defined as before. The branching strategy (22) can either be implemented

in the master problem or in the individual subproblems as in (Wolsey and Vanderbeck

(2010)). Branching in subproblems can be favourable, as it imposes tighter bounds, but

in contrary results in sometimes much more complex subproblems. Branch-and-Price is

often initialized by a heuristic to determine a first version of the generating set G̃k. More

insight on initialization is given in (Vanderbeck (2005)). Early termination of the column

generation at the nodes is discussed in (Vanderbeck and Wolsey (1996)).

Branch-and-Price methods are often used in routing problems in the areas of railway

(Peeters and Kroon (2008)), air (Sarac et al. (2006)) or vehicle traffic (Dabia et al. (2013))

or crew scheduling problems. In these problems, the subproblems to be solved during the

Branch-and-Price procedure usually have special structure, which allows them to be solved

by fast algorithms, such as dynamic programming, e.g. in (Caprara et al. (2003)). In (Chu

(2018)) Branch-and-Price with additional generation of cuts is applied to design and simul-

taneously plan a schedule for an urban bus network. More common in the railway schedul-

ing literature is column generation without branching as a heuristic, e.g. in (Toletti (2018)).

Similar to Branch-and-Price, decomposition is also possible for these heuristic approaches

but optimality is no longer guaranteed.

Methods on Lagrangian Relaxation

Also for Lagrangian relaxation, the presence of integer variables, in most cases, prohibit

strong duality and the relaxed formulation provides only a lower bound on the objective

of (2). Similar to the case of Dantzig-Wolfe reformulation, the retrieved lower bounds are

used in branching schemes, generally known as Branch-and-Bound. Inside the scheme, at

each node a lower bound is retrieved trough the Lagrangian relaxation. The bound then

can be used to determine if the subtree rooted at the current node can be fathomed or not.

The optimization over x variables with u variables fixed, is often carried out explicitly, as

the relaxed problem is usually significantly simpler to solve and in case of problem (5),

by the diagonal structure, even decomposable. For the optimization over u, approximative

methods, e.g. the sub gradient method, are used, e.g. in (Fisher (1981)). Optimal dual

multipliers u∗ are found when 0 is a subgradient of z(u∗).
Branch-and-Bound using Lagrangian relaxation is very popular in many different fields

including scheduling of railway networks, see for example (Zhou and Zhong (2007)) or

(Brännlund et al. (1998)). Zhou and Zhong presented a Branch-and-Bound algorithm for

single-track scheduling using Lagrangian relaxation to retrieve good lower bounds.



4.2 Methods for Complicating Variables

Decomposition techniques in presence of complicating variables are motivated by the gen-

eration of constraints, i.e. cuts for the master part problem from subproblems. Whenever

these cuts base on duality theory, i.e. strong duality, they can become redundant and do

not guarantee progress in the solution process any more when integer variables are present.

In the literature a variety of techniques for the decomposition of mixed-integer problems

with complicating variables exists, where modification allow to find valid cuts despite the

presence of integer variables.

Methods on Benders Decomposition

In Benders decomposition the dual objective of individual subproblems is used to gener-

ate restrictions on the master problem. By the possible duality gap in presence of integer

variables in problem (2), constraints from the dual objective can become redundant and

therefore useless. Still Benders decomposition is commonly used in mixed-integer linear

programming, but under a slightly different definition of the complicating variables as in-

troduced in section 3. In the following we present known methods for the alternative com-

plicating variable definition, to afterwards present ideas from the literature to handle the

original definition of complicating variables from section 3.

Standard applications of Benders decomposition in mixed-integer linear programming

aim to separate integer variables as complicating variables form continuous variables. As a

result, no integer variables are present in any subproblem, wherefore the cuts remain valid

and if the feasible set of integer solutions in the master problem is finite, termination of the

iterative cutting process is given. When separating integer variables from continuous in a

railway scheduling problem, the possibility of a proper diagonal structure in the subproblem

as in section 3 is very unlikely. Often in a larger railway network chains of interactions

through the entire network exist, i.e. every resource and every train, through other trains

affect almost any other train in the network and thus no diagonal structure establishes. Still,

the approach recently has been used successfully for railway scheduling in (Lamorgese

and Mannino (2019)), where detailed analysis of the subproblem revealed an alternative

decomposition technique in contrast to the diagonal structure.

Instead of solving the master problem at each iteration of the cut generation process to

integer optimality, cutting can be included into a branching scheme as in (Naoum-Sawaya

and Elhedhli (2013)), a Branch-and-Cut methods is the result. Benders Branch-and-Cut

only solves a relaxation with respect to integrality of master problem at each node. After

Benders cuts are generated at the individual nodes, ideally until no further cuts can be found,

branching is performed on a fractional part of the solution. Note, that also in case of Ben-

ders Branch-and-Cut, integer variables have to be separated from continuous to generate

continuous subproblems, i.e. nothing can be gained form the diagonal structure in (5).

Different to the standard Benders approach in mixed-integer linear programming are

logic Benders based approaches. Again integer variables are separated from continuous,

but cuts are based on logic statements instead of Lagrangian duality. (Codato and Fischetti

(2006)) introduce combinatorial Benders cuts to separate sets of disjunctive relations on

continuous variables from the master problem. Binary integer variables in the master prob-

lem define which of the disjunctive constraints are active. If the subproblem, i.e. the set of

active disjunctive constraints turns out to be infeasible, a cut removes an irreducible infea-

sible set of selected active disjunctive constraints C from the master problem in form of a



constraint on the binary integer variables in the master problem,

∑

i∈C; yi=0

yi +
∑

i∈C; yi=1

(1− yi) ≥ 1. (23)

A similar scheme is used in the hybrid logic Benders approach presented in (Harjunkoski

et al. (2000)) or (Harjunkoski and Grossmann (2002)). In difference to combinatorial Ben-

ders cuts, no irreducible infeasible set is determined, instead constraint programming is

used to determine the feasibility of a subproblem. Integer cuts similat to (23) are added to

the master in case of infeasible subproblems. (Harjunkoski and Grossmann (2002)) pro-

vide an application of the hybrid approach on multi-machine scheduling. In (Lamorgese

and Mannino (2015)) and (Lamorgese et al. (2016)) a similar approach is used for rail-

way scheduling, where the platform assignment problem at stations is decoupled from the

remaining problem through a Benders like reformulation.

Regarding Benders decomposition for exploration of the diagonal structure in the rail-

way scheduling of form (5), some approaches can be found in the literature to handle mixed-

integer linear subproblems. (Chu and Xia (2004)) present a modification of the subproblem

such that a Benders cut can be generated, that is proven to cut off at least one integer solu-

tion point in the master, such that by finiteness of integer points in the master, termination

is guaranteed. Other approaches try to find the convex hull of the feasible subproblem set to

make the integer restrictions redundant and return to a subproblem without integer variables,

as in the former cases. (Sherali and Fraticelli (2002)) use sequential lift-and-project from

integer programming to remove fractional variables in the optimal subproblem solution.

(Sen and Sherali (2006)) present an alternative approach solving the subproblems through

Branch-and-Cut, where in after termination the cuts construct the facets of the convex hull.

4.3 Heuristic Decomposition

In difference to exact decomposition techniques, heuristics are very common in the railway

scheduling literature. Here we briefly mention some heuristics, encountered during the

review of literature.

(Corman et al. (2010)) present a geographically decomposed scheduling approach. Lo-

cal scheduling on different regions is globally aligned by an iterative heuristic. The heuristic

has been proven to, if successful, return global feasible schedules. Optimality nontheless

is not guaranteed. The approach is a heuristic solution technique to the railway scheduling

formulation with complicating constraints as presented in section 3.

Temporal decomposition is an other common approach handled by heuristics in the liter-

ature. Decomposition in time propose a complicating constraint formulation of the problem.

Rolling horizon approaches are frequently used to handle such problems. In rolling horizon,

subproblems over fragments of the time horizon are sequentially solved, beginning with the

first fragment in time and ending with the last. In between fragments, variables shared with

the previous fragment are assumed to be partially or fully fixed. (Tsinghua and Yan (2012))

successfully apply a rolling horizon approach to railway scheduling.

An different approach in (Caimi et al. (2009b)) separates the problem inspired by its ge-

ographic structure into condensation and compensations zones, i.e. a distributed geographic

decomposition. Caimi et al. noted that railway networks often explore zones of high den-

sity and opposite zones of low density. It is likely that giving precedence in scheduling to

condensation zones and then schedule compensations, with fixed boundary conditions for



condensation zones, compensations zones are able to compensate delays from their neigh-

bouring zones. The scheduling of condensation and compensation is alternated, until a

feasible schedule is found.

5 Discussion

Decomposition in railway scheduling, i.e. the planning of arrival, departure and passing

times at strategical points for each train operating on a railway network has received more

and more attention over the past years. In this paper we present a brief overview on formula-

tions of the railway scheduling problem, to then focus on the mixed-integer linear program-

ming formulation of a railway scheduling problem. A natural occurrence of decomposable

structures in the railway scheduling problem is shown and corresponding interpretations of

the structures are given. The literature contains a variety of general approaches to handle

decomposable structures efficiently. By making the link to the railway literature it can be

seen that some of these approaches are already successfully in use for railway scheduling,

especially the methods of Branch-and-Price (Dantzig-Wolfe) as well as Lagrangian relax-

ation. On the other side, methods such as Benders decomposition are less common in the

railway literature. Most often in the literature of railway scheduling, whenever decomposi-

tion is the goal, specifically designed heuristics are used. In many cases, these are closely

related to decomposition principles in linear programming, some of which are shown in

section 3, e.g. column generation for Dantzig-Wolfe like reformulations.

Decomposition will continue to be one major topic in the future research of railway

scheduling as railway operators and researchers continuously aim to tackle larger scenarios.

On one side the increase in size will pose more and more complicated mathematical

problems, which have to be tackled in the right way. For future directions of research on how

to tackle such complex mathematical problems, it can be potentially interesting to explore

the full potential of the Benders decomposition. Compared to methods in Branch-and-

Price (Dantzig-Wolfe), Bender decomposition has received much less attention in railway

scheduling. In comparison to other research fields, e.g. stochastic optimization, which is

also a problem in railway scheduling, Benders decomposition has received large attention

and many successful applications exist. Especially approaches that are able to handle mixed-

integer linear subproblems can be of great value to railway scheduling as they allow a very

direct and natural decomposition of large scale railway scheduling problems.

On the other side, not only pose large scale problem in railway scheduling significantly

more complex mathematical problems but also demand larger amount of computational

power and memory. Decomposition can not only help to simplify the problem mathemat-

ically, but also allow to split up the computation onto multiple smaller sized machines,

resulting in possibly lower cost for the computational infrastructure.

In the future of railway operation, decomposition can be one key component to the

automation of scheduling operations on large scale railway networks for entire countries in

an optimal manner.
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