FACTS & FIGURES
SWISS PUBLIC TRANSPORT
2016/2017
Public transport network Switzerland

- Local traffic (tramway, trolleybus, bus; towns with extra local traffic)
- Tourist transport system (funiculars, cable cars, ski lifts)
- Main routes
- Regional traffic (rail and road)

Figures: 2014; design: SAPT
Contents

5 Editorial
6 Demand
8 Supply and network growth
10 Regional traffic
12 Modal split
14 Direct Service
16 Travel subscriptions
18 Freight traffic across the Alps
20 Freight traffic (domestic, import and export)
22 Frequency of train services
24 Network capacity
26 Financing
28 Pricing
30 Financing railway infrastructure
32 Major railway projects
34 Climate and environment
36 Safety
38 Popular votes
40 History
42 About APT
44 Key public transport figures
46 Financial flows diagram
Dear reader,

The history of public transport in Switzerland is one of continuous successes: in 2014, over 250 different transport companies handled over two billion journeys by train, tram or bus—the upward trend has remained unchanged for many years now. The public transport industry greatly appreciates this support and continues to strive to ensure that public transport remains appealing and customer-oriented.

You already know the results: comprehensive coverage all over Switzerland; only one travelcard, travelpass or ticket for seamless multimodal transport; coordinated timetables to ensure uninterrupted service; new stops and stations; expansion of network routes and new connections such as the Gotthard Base Tunnel. Public transport is a major Swiss asset.

Although the political consensus is for users of public transport to contribute more to help cover the costs of public transport, the APT seeks to avoid widening the “price gap” between motorised private transport and public transport: public transport must remain affordable for everyone.

A closer look at the near future reveals new challenges for public transport. The digitalisation of all aspects of life, including public transport is just one example.

In this publication, you will find key Swiss public transport figures and milestones. Discover the uniqueness of Switzerland’s successful system of public transport.

Ueli Stückelberger, APT Director
Public transport: a success story

Steady growth in demand

Swiss public transport has been an impressive success story. Demand has never been as high as today.

In 2014, over 2.06 billion passengers took Swiss trains, trams and (trolley)buses, which is 1.5% more than in the previous year. Compared to ten years ago, the number of passenger journeys has risen by over 35%. Three-fourths of these journeys took place over public road transport (tram, bus and trolleybus). One-fourth of all journeys took place on the railway network.

In 2014, passengers travelled over 24 billion passenger kilometres (Pkm). This amounts to an increase of 2.6% over the previous year. Since 2004, the number of passenger kilometres travelled by public transport has grown by 30%. Customers are therefore not only using public transport more often, but are also travelling longer distances. The biggest share of passenger kilometres (20 billion, 82%) is due to railways – of which two-thirds correspond to long-distance traffic. Regional passenger traffic accounts for around 36% of public transport services (6.9 billion by rail, 1.5 billion by bus and 220 million by tram). As for local traffic, trams and trolleybuses account for 1.4 billion, and bus traffic accounts for 1.1 billion passenger kilometres.

Sources: APT, FSO
Supply and network growth

Continuous expansion of services

Customers benefit from a wide range of public transport services

In order to face the growing demand for public transport, transport companies continuously expand their range of services. Trains, trams and buses run more frequently (shorter headways), more quickly (speed enhancements), more directly (less need to change trains) and longer (night services). Trains, trams and buses are also continuously adapted to suit the needs of customers: greater seating capacity, low-floor entry, air conditioning, customer information systems, 3G/4G repeaters, WLAN, etc.

Since 2004, traffic volumes have therefore increased by 22%, reaching a total of 525 million journey kilometres. Railways (196 million train kilometres) have risen by nearly 29%; local tramways (33 million tramway kilometres) have increased the number of runs by 18%; whereas trolleybus traffic (around 27 million trolleybus kilometres) has remained stable. Bus traffic (267 million bus kilometres) has experienced a 21% increase.

The Swiss public transport network steadily continues to expand. In 1962, railways, buses, trolleybuses and tramways covered a distance of 16,235 kilometres. In 2014, the entire network covered over 26,037 kilometres.

Sources: FOT, APT, FSO
Regional traffic

Comprehensive service

Greater efficiency, robust growth in demand

Regional traffic is a key pillar of public transport in Switzerland. Around 1,400 lines operated by over 120 transport companies ensure that good-quality public transport options are available even in remote parts of the country. The range of basic public transport services includes trains and buses, and in certain areas also trams, boats or even cableways.

Regional passenger transport has risen steadily in recent years. Between 2007 and 2015, demand has increased by an average of 4.7% per year.

The profitability of regional traffic has improved considerably thanks to efficiency gains and rising demand. At the same time, public subsidies have increased. Despite higher subsidies, the level of coverage of costs has increased by an average of 0.6% per year since 2012.

If we are to continue writing the regional traffic success story, approved infrastructure projects and transport planning must be more closely aligned, procurement procedures must be harmonised and long-term funding must be secured. The Federal Council has mandated a reform of regional passenger transport.

Level of subsidies for regional transport (in CHF per passenger km)

Note: this chart is based on forecasted figures from transport companies. Since 2012, the actual average improvement in efficiency has been 0.5%. The discrepancy between forecasted figures and the actual amounts is due to the estimated low level of growth in passenger km.
The trend continues

Public transport accounts for an ever greater share of overland passenger traffic

The mobility needs of the Swiss population have increased steadily in recent years. All in all, the total volume of passenger traffic has increased by 19% since 2004. Rising by 30%, public transport has contributed considerably more to growth than private transport (+16%). This is reflected in the modal split: the share of public transport in total passenger traffic by rail and road has increased from 18.9% to 20.7% over the past ten years.

The modal split for public transport is high for urban and interurban passenger traffic as well as for commuter traffic to/from work or school. The modal split is lower for leisure and shopping traffic.

Public transport has not always followed an upward trend. In previous decades, the share of public transport had fallen to low levels. Various measures had to be taken such as a cheaper half-fare travelcards, regional network travelpasses to protect the environment and modernise both infrastructure and rolling stock. This was a turning point in the history of Swiss public transport.

Mobility has always been an essential requirement of human beings and a necessary condition for a functional economy. However, mobility is also often associated with noise, unhealthy air pollution and greenhouse gas emissions. An efficient and environmentally friendly way to address growing mobility demands is to change the modal split in favour of public transport.

Sources: APT, FSO
Direct Service

Unparalleled worldwide

A single ticket recognised by 250 different transport companies

Public transport users in Switzerland benefit from a system that is unique worldwide: Direct Service (DS). Direct Service is a time-tested national fare network. Through the Direct Service Network (DSN), customers are able to buy simple and uniform multimodal travelcards, travelpasses and one-trip tickets that are valid for multiple forms of transportation such as train, bus, ships and mountain cableways, all run by different transport companies (TCs).

DSN covers practically the entire Swiss public transport network. Around 250 transport companies are part of the DSN. Although almost no one nowadays uses the term “Direct Service”, any child can tell you the best-known DS products: the full-fare travelcard (GA) and the half-fare travelcard. The latter is the world’s most widely sold discount card for public transport.

The DS range of products includes travel subscriptions and regular tickets that can be purchased almost everywhere and are valid for the whole of Switzerland.

Another nice benefit for public transport users is the distance discount: DSN-affiliated transport companies calculate their prices using a uniform system that includes discounts of up to 25% depending on the distance travelled.

The DSN secretariat is called ch-direct. Its main task is to regulate the distribution of income and costs across the entire DSN.

Example of a Direct Service discount

<table>
<thead>
<tr>
<th>Type of price / journey / company</th>
<th>Price in CHF</th>
<th>km</th>
<th>Price (in cts per km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total price charged for Appenzell–Engelberg</td>
<td>32.00</td>
<td>222</td>
<td>14.41</td>
</tr>
<tr>
<td>Single price for Appenzell–Herisau (AB)</td>
<td>5.90</td>
<td>26</td>
<td>22.69</td>
</tr>
<tr>
<td>Single price for Herisau–Wattwil (SOB)</td>
<td>5.90</td>
<td>33</td>
<td>17.87</td>
</tr>
<tr>
<td>Single price for Wattwil–Rapperswil (SBB)</td>
<td>5.90</td>
<td>27</td>
<td>21.85</td>
</tr>
<tr>
<td>Single price for Rapperswil–Arth-Goldau (SOB)</td>
<td>10.60</td>
<td>55</td>
<td>19.27</td>
</tr>
<tr>
<td>Single price for Arth-Goldau–Lucerne (SBB)</td>
<td>6.40</td>
<td>31</td>
<td>20.65</td>
</tr>
<tr>
<td>Single price for Lucerne–Engelberg (zb)</td>
<td>8.90</td>
<td>50</td>
<td>17.80</td>
</tr>
<tr>
<td>Theoretical price for Appenzell–Engelberg</td>
<td>43.60</td>
<td>222</td>
<td>19.64</td>
</tr>
</tbody>
</table>

In this example, the discount for the customer is CHF 11.60 or 26.6%.

Source: APT
Travel subscriptions

One in every two people has one

Over half of all Swiss adults have a half-fare travelcard, a full-fare travelcard or a regional network travelpass. Switzerland therefore has a higher market penetration rate for public transport subscriptions than any other country in the world. At the end of 2015, over 2.3 million half-fare travelcards, 1.3 million regional network travelpasses and 460,000 full-fare travelcards were being used.

This is confirmed by commuter travel patterns: over one-third of those who commute to work use public transport as their main means of transport. The longer the distance travelled to/from work, the greater the share of public transport. Those who commute for education and training purposes tend to use public transport even for short distances.

Introduced in 1891, the half-fare travelcard encountered only moderate success for a long time. A huge leap occurred in 1987, when the Swiss Parliament substantially reduced its price from CHF 360 to CHF 100 in an effort to protect the environment. The number of half-fare travelcards surged to over 2 million within a short period of time, allowing the Swiss Confederation to quickly adjust its subsidies. Originally launched in 1898, the full-fare travelcard was initially intended as an offer for business travellers. The full-fare travelcard has evolved from a niche product to the standard travel subscription for commuters. The tremendous growth observed in recent years is a clear manifestation of this.

The SwissPass was introduced for all subscribers to the full-fare or half-fare travelcard on 1 August 2015. This card has an embedded RFID chip, which enables the subscription to be managed online and offers access to partner services such as Mobility Carsharing or ski passes. The range of SwissPass services will steadily be expanded.

Sources: APT, SBB, FSO
Freight traffic across the Alps

Reducing road traffic

Two out of every three tonnes of cargo cross the Swiss Alps by rail

The market share of rail in total transalpine freight traffic is far greater in Switzerland than it is in neighbouring countries. In 2015, the share of rail was 69% in Switzerland, the highest value reached since 2001. In other words, about two out of every three tonnes of cargo cross Switzerland by rail (27 million tonnes versus 12 million tonnes by road).

In 2015, 57% of all rail freight traffic crossed the Alps through the Gotthard tunnel and over 40% went through the Lötschberg–Simplon route. SBB holds the strongest market position along the Gotthard route and BLS holds the dominant position along the Lötschberg–Simplon route. Alongside SBB and BLS, Crossrail has established itself as the third major player.

By enacting legislation on the protection of the Alps (Art. 84 of the Federal Constitution), Swiss voters clearly expressed their desire for transalpine freight traffic to be shifted from road to rail wherever possible. In 2015, there were still over 1 million lorries crossing Switzerland, which exceeds the target of 650,000 to be reached by 2018. The opening of the Gotthard Base Tunnel on 1 June 2016 was the first step towards achieving a flat rail route through the Alps. However, productivity gains will not be possible until after the Ceneri Base Tunnel has been completed and after the tunnels along the north-south route have been widened to accommodate transport trailers with 4-metre corner heights. These projects should help to facilitate the shift in transalpine traffic from road to rail over the next few years. Despite these measures, the Federal Council does not expect the 650,000 target to be reached by 2018.

Sources: DETEC, ARE, FOT, APT
Freight traffic (domestic, import and export)

Constant pressure

Rail freight traffic relieves the Swiss road network of 2.5 million lorry trips

While rail is the main means of transportation for traffic transiting through Switzerland, lorries are the most frequently chosen option for domestic, import and export freight traffic. Nevertheless, rail traffic still accounts for over one-fourth of total freight traffic (measured in tonne kilometres). This proportion is much higher than in nearly all other Western European countries. A total of 35 million tonnes of domestic, import and export rail freight traffic replace 2.5 million lorry trips. Nowadays, the transported goods are mainly construction material, fuels, fodder and timber.

With more globalisation, the share of cargo being transported in containers has increased. In addition, several maritime ports (e.g. Rotterdam) have been expanded and larger cargo-carrying vessels are being built to accommodate a larger number of containers. With these two developments, greater importance will be given to freight traffic between ports and the hinterland as well as to corresponding intermodal transport.

The backbone of domestic freight traffic is comprised of around 1,500 sidings, which sets a European record for railway track density. Generally speaking, it is SBB Cargo that handles shunting, pooling and sorting operations, ensuring that freight cars are taken from sidings and marshalling yards to over 300 service points, factories and major distribution centres. These freight-loading operations have become less prevalent and have been downsized in many respects. However, efficient pooling and sorting ensures that these operations remain the best option for a wide variety of transport needs.

In order to improve the general conditions for domestic rail freight transport, the Federal Council enacted the completely revised Goods Carriage Act (GCarA, SR 742.41) and corresponding ordinances, both of which came into effect in mid-2016.

Sources: FSO, FOT
Frequency of train services

World’s shortest headways

No other rail network is used as intensively as Switzerland’s

Each day, an average of 128 passenger trains per kilometre travel on the Swiss 3000-km rail network. Passenger trains run at 9-min. headways from 5.00 a.m. to 1.00 a.m. the following morning. Switzerland is also among the world’s top countries in terms of freight train services, surpassed only by China and Russia.

If we consider passenger and freight train traffic together, the Swiss Federal Railways (SBB) network has the world’s highest frequency of train services: 153 trains per kilometre of track circulate every day, compared with 107 for Japan and 96 for the UK. Switzerland is also number 1 in terms of route density: no other country in Europe has more railway tracks per square kilometre.

Maintaining a high frequency of train services in Switzerland poses serious challenges. With so many freight trains running at night, hardly any time is left for infrastructure maintenance and renewal. High frequency requires high levels of punctuality, very expensive construction works – e.g. non-intersecting junctions – and fail-proof train control systems.
The success of public transport also brings major challenges. The constant increase in demand stretches railway infrastructure capacities to the limit. While east-west routes are mainly used for passenger traffic between economic centres, north-south routes are used mostly for freight traffic. On routes where different types of traffic overlap, (long distance, regional and freight traffic), capacities are already being used to the maximum.

Traffic bottlenecks mainly occur during peak times. As a result, the public transport network needs to be aligned with peak traffic and hence more frequent service. This creates considerable maintenance costs as well as difficulties intensifying maintenance with the ever-increasing frequency of traffic. In the future, demand is expected to continue at peak times. The public transport industry is therefore taking steps to reduce the burden of peak times and distribute traffic more evenly throughout the day.

The Confederation forecasts a 50% increase in passenger traffic and a 77% increase in freight traffic between 2010 and 2030. This growth will not be evenly distributed across the country. It will be particularly strong in urban areas and cannot be absorbed without expansion of infrastructure capacity. Action must be taken both for long-distance traffic between agglomerations and for regional traffic within agglomerations. Measures will also be needed for freight traffic.

Sources: Traffic simulation VM-DETEC (ARE), FOT, INFOPLAN-ARE, FSO-GEOSTAT, swisstopo
Financing

Well-invested tax revenues

Financial flows in public transport

Maintaining high-frequency service and an extensive public transport network is very costly. Sales revenue of transport companies (TCs) is not enough to cover all of the associated costs. Given the clear economic benefits of public transport, the Confederation, the cantons and communes all provide subsidies for public transport. At present, public transport generates enough revenue to cover over half of its costs. The remaining half comes from public subsidies and infrastructure contributions.

Public funding for public transport is drawn from general budgets, the FinPTO Fund and the Transport Infrastructure Fund (TIF). The Confederation, the cantons and communes have set aside a total of around CHF 6.4 billion in general funding for public transport. This amount includes financing for the operation and maintenance of rail infrastructure, as well as compensation to TCs for combined traffic and regional passenger traffic. Since 2016, the Railway Infrastructure Fund (RIF) funds the entire railway infrastructure.

The financing of Swiss public transport is one of the most comprehensive, consistent but also the most intricate in Europe. The last page of this publication presents a chart showing all of the main financial flows for Swiss public transport together with the corresponding legal basis.

Sources: APT, FSO, FOT, FDF
Society and policymakers place ever increasing demands on transport companies. They want more frequent service, larger and more comfortable rolling stock, greater levels of safety. All of these demands create significant additional costs. For this reason, the Federal Council decided that public transport users need to contribute to the planned expansion of railway infrastructure. At the same time, the prices that railway companies pay to use of Swiss railway infrastructure will be raised in two phases. Starting in 2017, the increase in train path prices will generate an additional CHF 100 million in costs for transport companies per year.

Transport companies go to great lengths to absorb some of these additional costs through efficiency gains. However, if the remaining additional costs cannot be passed on to taxpayers, then transport companies have no other choice than to raise passenger fares. The flip side of this is that the resulting improvements in the quality and frequency of train service bring significant added value to customers. Expansion of capacity also justifies moderate increases in ticket fares.

Nevertheless, if one considers things solely in terms of their impact on the average person’s budget, public transport has indeed become less appealing than road traffic in recent years. For this reason, the APT does not feel that public transport users should be made to bear a greater burden than they already do. Unless the cost of motorised private transport also increases in parallel with public transport fares, then the “users should pay” argument, which is often used to justify price hikes, will backfire, creating undesirable political, environmental and social consequences as more and more people leave public transport in favour of private motorised transport.

Source: FSO, Price Supervisor, APT
Following adoption in 2014 of the draft FERI proposal (project to fund and expand rail infrastructure), Swiss voters laid the foundation for sustainable long-term funding of the railway network. FERI includes as its core element the creation of a permanent Rail Infrastructure Fund (RIF) as well as a strategic rail infrastructure development programme (STEP) for the coming decades.

Since 1 January 2016, all costs relating to operation, maintenance and expansion of railway infrastructure have been funded by a new permanent Rail Infrastructure Fund (RIF). The funds for the RIF are drawn from the federal budget for operation and maintenance of infrastructure. In addition, other financing measures will be taken: lower tax deduction for transportation costs; higher train path prices; and a lump-sum contribution to the cantons.

The RIF will primarily be used to maintain and operate the railway infrastructure. Every four years, the Confederation will sign a performance agreement with railway companies covering the allocation of funding. Expansion projects will be decided by the Swiss Parliament.

The APT gives considerable importance to ensuring that road-based public transport, namely buses and trams, also benefit from secure, uninterrupted funding. For this reason, the APT supports the National Roads and Agglomeration Fund (NRAF).

Sources: FOT, APT
Since the early 1990s, Switzerland has pursued a consistent, long-term transport policy, which enjoys strong support from the Swiss population. This policy has enabled the expansion and modernisation of the railway infrastructure.

Thanks to Rail 2000, a system of junctions has been implemented between the country’s main railway stations. Trains arrive at the station just before or after the hour or the half-hour, and leave a few minutes later. The Future Development of Railway Infrastructure (ZEB) project will allow this system of junctions to be expanded further. The New Rail Link through the Alps (NRLA) project achieved a new milestone with the opening of the Gotthard Base Tunnel. In 2020, the NRLA project will reach completion with opening of the Ceneri Base Tunnel.

The strategic rail development programme (STEP) is part of the project to fund and expand rail infrastructure (FERI). Drawing from a total budget of CHF 42 billion, STEP should enable gradual expansion of rail infrastructure between now and 2050. The main objective is to increase capacity. Over time, 15-min. headways should become the rule on trunk routes. Efforts should also be made to improve the competitiveness of freight traffic. The first phase will reach completion by 2025 and will cost around CHF 6.4 billion.
Climate and environment

Protecting the environment

Public transport preserves the environment and natural resources

Motorised mobility is very energy-intensive. Around one-third of total energy consumption in Switzerland is used for mobility. This also includes rail, bus, tram and trolleybus. Measured in passenger kilometres, however, public transportation provides much more efficient energy consumption than private cars or airline traffic.

Compared to private cars, a trip by train along the same route is around four times more energy-efficient and produces twenty times lower carbon emissions. Accounting for only 0.2% of total transport-related carbon emissions, the railway system has a very small ecological footprint. The reason for this is the source of energy production: hydraulic power accounts for 90% of the energy mix used to power SBB rail transport. By 2025, 100% of rail transport power grid will be provided by renewable energy sources. Even road public transport relies on electrical vehicles, which makes it very environmentally friendly.

In addition to power consumption, both noise and infrastructure capacity increases have an impact on nature and the environment. Most of the damage to the environment is caused by motorised private transport. Nevertheless, the public transport branch continues to make efforts to reduce the negative impact on the environment and climate. Numerous energy savings programmes based on new technologies and operation modes have already been implemented. In addition, all new purchases and infrastructure capacity expansion are assessed and optimised in terms of their external costs.

Sources: ARE, FOEN, FSO, SBB

Traffic emissions in 2014

1) International air traffic is not taken into account.
For this reason, CO₂ emissions from air traffic are correspondingly low.
Safety

Public transport is safe

The number of accidents involving public transport continues to decline

Users of public transport in Switzerland enjoy tremendous safety when they travel. On a per km basis, people are 20 times less likely to be killed in railway traffic than in road traffic. Based on accident statistics from 2015, safety standards are also extremely high for tram, bus, ship and cableways.

Over the past few decades, public transport has become even safer. The number of accidents has dropped by around half. If one also considers the large increase in traffic volume and then compares accident figures with the distance travelled, public transport turns out to be over three times safer.

Considerable sums are still spent to ensure the safety of all forms of public transport. Level crossings and tunnels are being renovated, measures are being taken to mitigate natural hazards, the European Train Control System (ETCS) is being rolled out across the entire Swiss network and maintenance spending has reached unprecedented levels.

Comparison of means of transport, 2005–2014

<table>
<thead>
<tr>
<th>Means of Transport</th>
<th>One death per million passenger kilometre</th>
<th>Risk of death ratio for distance travelled, with trains being the safest (= 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td>12 770</td>
<td>1</td>
</tr>
<tr>
<td>Automobile</td>
<td>556</td>
<td>20</td>
</tr>
<tr>
<td>Bicycle</td>
<td>58</td>
<td>204</td>
</tr>
<tr>
<td>Motorcycle</td>
<td>28</td>
<td>399</td>
</tr>
</tbody>
</table>

Accidents per million passenger kilometre by rail

Source: FOT, FSO, APT
Popular votes

Public transport is popular

Direct democracy key to the success of public transport

One of the main reasons why public transport has been so successful in Switzerland is the fact that the Swiss population has a direct say at federal, cantonal and communal level regarding the most important planned projects and budgets relating to public transport. In this manner, passengers are directly involved in decision-making on fundamental public transport issues. Proposals to promote public transportation have a very good chance of being approved by Swiss voters. Examples include plans for the New Railway Link through the Alps (NRLA), Rail 2000, proposals to finance and expand the railway infrastructure as well as cantonal and communal projects (e.g. the development of commuter train, metro, tram and bus lines), which were all approved by voters. Moreover, the outcome of practically all votes affecting public transport have been favourable to public transport, e.g. the popular initiative “for the protection of the Alpine region from transit traffic” or the vote on introduction of the heavy goods vehicle charge (HGVC).

The clear “no” vote cast by the Swiss electorate on the draft proposal for the Milk Cow initiative is the most recent example of confidence in public transport and an indication of the strong support that it enjoys among the people. The draft proposal to distribute the entire proceeds from the mineral oil tax from the federal coffer to road transport was rejected on 5 June 2016 by just under a 71% majority of Swiss voters.

<table>
<thead>
<tr>
<th>Date</th>
<th>Name of the popular vote</th>
<th>Content</th>
<th>% of yes votes</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.12.1987</td>
<td>Rail + Bus 2000 concept</td>
<td>Decision for four new railway routes including necessary budget appropriation of CHF 5.1 billion</td>
<td>57.0%</td>
</tr>
<tr>
<td>12.6.1988</td>
<td>Coordinated transport policy</td>
<td>More solid financial support for public transport; modes of transport to be assessed in terms of environmental impact, among other things</td>
<td>45.5%</td>
</tr>
<tr>
<td>27.9.1992</td>
<td>NRLA</td>
<td>Basic decision in favour of the high speed rail network and efficient combined transport services across the Alps</td>
<td>63.6%</td>
</tr>
<tr>
<td>20.2.1994</td>
<td>Alpine Initiative</td>
<td>Transalpine freight traffic must be shifted to the railways; no new transit roads through the Alps</td>
<td>51.9%</td>
</tr>
<tr>
<td>20.2.1994</td>
<td>Continuation of flat-rate HGVC</td>
<td>Continuation of flat-rate heavy goods vehicles until introduction of a distance-based heavy goods vehicle</td>
<td>72.2%</td>
</tr>
<tr>
<td>20.2.1994</td>
<td>Distance-based HGVC</td>
<td>Basic decision on distance-based HGVC</td>
<td>67.1%</td>
</tr>
<tr>
<td>27.9.1998</td>
<td>HGVC Act</td>
<td>Rules of implementation of HGVC</td>
<td>57.2%</td>
</tr>
<tr>
<td>29.11.1998</td>
<td>FinPTO</td>
<td>Vote on the financing of Rail 2000, NRLA, Connections to high-speed rail network and noise protection (total CHF 30.5 billion)</td>
<td>63.5%</td>
</tr>
<tr>
<td>27.11.2005</td>
<td>Shop opening hours in railway stations</td>
<td>Longer opening hours to be maintained</td>
<td>50.6%</td>
</tr>
<tr>
<td>9.2.2014</td>
<td>FERI</td>
<td>The draft proposal to fund and expand rail infrastructure (FERI) includes the creation of a Rail Infrastructure Fund (RIF) as well as a strategic rail infrastructure development programme (STEP)</td>
<td>62.0%</td>
</tr>
</tbody>
</table>

Sources: Federal Chancellery, APT
History

General overview

Key events in Swiss public transport since 1847

1847 Switzerland opens its first train service from Zurich to Baden and enters the railway era.
1849 A network of postal horse-coach services is established. It reaches its peak in 1912.
1852 The Swiss Parliament rejects proposals to organise the railways on a national level and consequently, a heterogeneous network of private railway routes emerges.
1857 The North East Railways (NOB) and the United Swiss Railways (VSB) agree on standardised fares and create “Direct Service”. A single ticket is valid for the entire journey and its price is based in declining scale relation between the distance travelled and km prices.
1882 The 15-kilometre long Gotthard tunnel revolutionises transalpine traffic.
1894 Central European Time (CET) introduced on the basis of railway transport
1898 The first full-fare travelcard is introduced. It is valid for entire 3,200 km of the railway network.
1902 Switzerland eventually decides to nationalise its railways. Several railway companies (e.g. Jura-Simplon-Bahn, NOB, Schweizerische Zentralbahn und VSB) merge to form SBB.
1906 PostBus opens its first bus service from Bern to Detligen. The 19.8 km-long Simplon tunnel becomes the longest tunnel in the world.
1910 BLS introduces the world’s most powerful electric engine: the Be 5 / 7 locomotive. The Lötschberg tunnel is opened to traffic three years later.
1924 Bern becomes the first town to use both tramways and buses for urban transport.
1926 The first car shuttle railway service is introduced on the line between Kandersteg and Brig/Domodossola Autoverlad.
1937 SBB introduces “Red Arrow” and lightweight express trains; a first step towards modern passenger rail traffic.
1953 Road traffic exceeds railway traffic for the first time.
1960 SBB finalises its electrification programme.
1975 The Heitersberg tunnel between Lenzbourg and Spreitenbach is built. This is the first major railway construction project since 1913.
1982 SBB launches the synchronised timetable in regional services between Bern—Solothurn and Lausanne—Echallens—Bercher.
1984 The Basel area introduces the transport network Northwestern Switzerland (TNW), with fares based on zones.
1987 For environmental reasons, the Swiss Parliament cuts the price of the half-fare travelcard from 360 to 100 Swiss francs. Demand climbs from 0.6 to two million, quickly making subsidies unnecessary.
1990 In the Zurich area, 44 operators join to form ZVV, Switzerland’s first integrated transport corporation
1997 The revision of the rail transport law enables competition in regional transport. The Mittelthurgau Railways take over the Konstanz lake route in Thurgau from SBB.
1998 Swiss voters approve the largest budget in their country’s history: CHF 30.5 billion for railway infrastructure (incl. NRLA and Rail 2000).
1999 The RhB opens the 19-kilometre long Vereina tunnel. It is the world’s longest narrow gauge tunnel.
2004 With 50 km of new lines within the Rail 2000 project, the public transport network records the largest expansion in a hundred years (+ 12 %).
2007 The 36-kilometre long Lötschberg base tunnel is opened to traffic as the first axis within the NRLA project.
2008 In Lausanne, the M2 line becomes the first underground metro line within the urban transport network. It is the world’s steepest metro.
2014 Following adoption of the draft FERI proposal, Swiss voters laid the foundation for continuation of the “Swiss public transport” success story.
2015 Introduction of the SwissPass enables a uniform control status as well as a uniform overview of existing and future travelcards and passes.
2016 Opening of Gotthard Base tunnel. Covering 57 kilometres, it is the world’s longest railway tunnel.

Source: APT
About APT

Brief portrait

Swiss Association of Public Transport (APT)

The Swiss Association of Public Transport (APT) is the national umbrella organisation of public transport companies. It counts 127 regular members, i.e. companies that provide passenger and freight transport services by rail, bus, boat or cableway. The largest and best-known members include SBB, PostBus Switzerland Ltd., BLS, SOB, RhB and urban transport companies. The APT also has 180 commercial and industrial companies as supporting members.

The most important tasks of the APT at a glance:

- Representing the policy interests of members in dealings with the authorities, the Swiss Parliament and third parties
- Developing the Swiss public transport system
- Sponsoring various initial and continuing training courses
- Establishing technical standards in public transport (Railway Technology Reference Manual)
- Acting as an Ombudsman for public transport disputes
- Managing the self-regulatory organisation (SRO)
- Serving as “co-owner” of the independent Swiss train path allocation body “Trasse Schweiz AG”
- Providing the general public and the authorities with information on the importance of public transport and drawing attention to Swiss public transport concerns and challenges
- Facilitating the networking activities of members by providing discussion platforms and organising symposiums, technical committee meetings and workshops

Key events


1924 BLS and Bodensee–Toggenburg-Bahn become members. Opening its doors to navigation companies, the association changes its name to “Association of Swiss Transport Companies” (VTS). By 1930, its membership has grown to 142: 29 standard gauge, 80 narrow gauge and 33 tram operators.

1940 The railways operate at maximum efficiency during the war, but it becomes increasingly difficult for them to find the necessary materials, rails and lubricants, for example. For the private railways, the association organises the provision of such materials and also takes charge of the allocation – in accordance to a certain quota – of tyres to the bus service operators. In 1951, a total of 11,502 tonnes of materials were delivered (mostly rails), the highest amount of supplies ever.


1955 The association changes its name to the more suitable “Association of Swiss Public Transport Companies”. Around 30 urban transport companies have joined in the meantime.

1967 VST moves into new offices at Dählhölzliweg in Bern. The secretariats of the aerial cableway association (originally VSS, then SVS, now SCW) and the association of franchised motorised transport companies (SKAG) merge with VST.

1988 VST is now called “Swiss Association of Public Transport” (APT) and merges with SKAG.

1999 Within the context of the Railway 1 Reform programme, SBB joins APT, and PostBus follows shortly afterwards.

2016 The public transport secretariat ch-direct, which APT took over from Swiss Federal Railways (SBB) in 2005, becomes an independent association.

Source: APT
## Key public transport figures

### Impressive figures
**Public transport in 2014**

<table>
<thead>
<tr>
<th></th>
<th>Railway</th>
<th>Tramways and trolleybuses</th>
<th>Buses</th>
<th>Rack railways and cableways</th>
<th>Shipping</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Network length in kilometres</strong></td>
<td>5,304</td>
<td>631</td>
<td>20,102</td>
<td>1,116</td>
<td>1,584</td>
<td>28,737</td>
</tr>
<tr>
<td><strong>Stops</strong></td>
<td>2,124</td>
<td>22,003</td>
<td>1,384</td>
<td>325</td>
<td>25,836</td>
<td></td>
</tr>
<tr>
<td><strong>Rolling stock</strong></td>
<td>13,488</td>
<td>1,289</td>
<td>5,101</td>
<td>40,494</td>
<td>155</td>
<td>60,572</td>
</tr>
<tr>
<td><strong>Staff</strong></td>
<td>36,879</td>
<td>16,661</td>
<td>5,111</td>
<td>866</td>
<td>59,517</td>
<td></td>
</tr>
<tr>
<td><strong>Passengers in millions</strong></td>
<td>576</td>
<td>769</td>
<td>715</td>
<td>219</td>
<td>11</td>
<td>2,290</td>
</tr>
<tr>
<td><strong>Passenger kilometres in millions</strong></td>
<td>20,010</td>
<td>1,640</td>
<td>2,676</td>
<td>402</td>
<td>150</td>
<td>24,878</td>
</tr>
<tr>
<td><strong>Tonnes (net) kilometres in millions</strong></td>
<td>10,751</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>10,751</td>
</tr>
<tr>
<td><strong>Sales revenue in millions CHF</strong></td>
<td>5,244</td>
<td>1,555</td>
<td>1,000</td>
<td>108</td>
<td>7,907</td>
<td></td>
</tr>
</tbody>
</table>

**Sources:** APT, FSO
General tax revenues of Confederation B: 901 mio. D: 5 mio.
General tax revenues of cantons B: 910 mio.* C: 600 mio.*
General tax revenues of communes 800 mio.*

Regional traffic SBB and TCs 1811 mio.
Local traffic 1400 mio.
Freight traffic 198 mio.
Car shuttle traffic 2 mio.
Sales revenue from passenger and freight traffic 7241 mio.

Sources of funding
1 Legal basis for regional passenger traffic: Federal Act on Passenger Transport (PTA, SR 745.1) and Ordinance on Subsidies for Regional Passenger Transport (RPTSO, SR 745.16). Freight traffic on narrow gauge lines: Federal Act on the Carriage of Goods by Rail and Navigation Companies (GCara, SR 742.41); Ordinance on the Promotion of Goods Transport by Rail (RGTO, 740.12).
2 Cantonal legislation applies to the various cantonal subsidies paid in support of local traffic.
3 Communal legislation applies to communal funding for local traffic.
5 Total revenues from passenger traffic (CHF 6,040 million) and freight traffic (CHF 1,201 million). This can be seen in the total figures but not at the level of individual allocation of funding.

Use of funding
A All long-distance traffic services have been awarded by contract to Swiss Federal Railways (SBB). With this concession, the SBB receives no operating subsidies from the state. Legal basis: Concession no. 584 for commercial provision of regular passenger transport services (long-distance traffic) for 2007 – 2017.
B The Confederation and the cantons place orders for regional passenger transport services by issuing calls for tenders covering two-year periods. This is a way of making compensatory payments to cover shortfalls that transport companies are likely to experience as a result of providing regional passenger transport services.
C The use of funding in local traffic includes operating subsidies for road, tram and rail traffic.
D Freight transport subsidies are paid to cover operational costs for:
– Transalpine combined traffic (CHF 163 million),
– Rail freight traffic that does not cross the Alps (CHF 30 million),
– Rail freight traffic along narrow gauge lines (CHF 5 million)
E Contributions to cover shortfalls that transport companies are likely to experience as a result of providing car shuttle services through the Furka tunnel.
Sources of funding

1. Legal basis can be found under Allocation of funding.

2. Cantonal legislation applies to cantonal contributions for private railway networks and for operation and maintenance of local traffic. In addition, the cantons make financial contributions for agglomeration projects (Transport Infrastructure Fund).

3. Communal legislation applies to communal contributions for operation and maintenance of local traffic networks.


5. The FinPTO Fund is replenished from the heavy goods vehicle charge (HGVC), the mineral oil tax and VAT. Legal basis: Federal Constitution and Federal Assembly Ordinance on Funding Rules for Major Railway Infrastructure Projects (SR 742.140).


7. Federally established compensatory payments from the SBB Real Estate Division to the SBB Infrastructure Division. Legal basis: Performance Agreement between the Swiss Confederation and Swiss Federal Railways (SBB) for 2013–2016.

8. Transport companies (TCs) pay to use train paths (minimum price, contribution margin and additional services). The total revenues derived from train path sales about to CHF 1.09 billion from SBB, CHF 76 million from BLS and an estimated CHF 20 million from other railway companies operating on standard gauge lines. The train path sales revenue indicated here does not include revenues from railway companies operating lines with a track gauge of 1,000 mm (i.e. metre gauge railways). Legal basis: Railways Act (RailA, SR 742.101) and Rail Network Access Ordinance (RailNAO, SR 742.122).

Use of funding

A. Federal contributions are made on the basis of a performance agreement. These subsidies cover operations (e.g. interlocking), maintenance (e.g. greasing of sleepers), and renovation (e.g. replacement of sleepers) and network expansion (e.g. laying of third track). Legal basis: Federal Act on the Swiss Federal Railways (SBBA, SR 742.31), Performance Agreement between the Swiss Confederation and Swiss Federal Railways (SBB) for 2013–2016.

B. Federal contributions are made on the basis of a guarantee credit. Legal basis: Federal Decree on the Guarantee Credit for Private Swiss Railway Infrastructure for 2013–2016.

C. This expenditure includes agglomeration projects (Transport Infrastructure Fund) as well as regular network maintenance and operation.

D. Funding is allocated as follows: NRLA (CHF 1,023 million), Rail 2000/ZEB (CHF 289 million), Noise protection (CHF 87 million), High-speed rail links (CHF 45 million).

E. This expenditure includes construction and renewal of private sidings (CHF 18 million) and co-funding of terminal facilities (CHF 6 million).

F. This expenditure includes contributions for Separation of traffic (CHF 2 million) and Measures for the disabled (CHF 10 million).
Impressum

Coordination
Ueli Stückelberger

Concept/editing
Mirjam Büttler
Maura Weber

Layout/design
Angela De Stefano
Philipp Lädrach

Translation
Randall Jones

Printing
Rub Media AG, Wabern

Hardcopy orders
www.voev.ch/bestellen